
Building Secure and
Watchtower-efficient
Bitcoin Payment Channels
with BitVMX

Sergio Demian Lerner | CTO, Fairgate Labs OCT 2025

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Disclaimer

I am not an expert on the Lightning Network protocol. My perspective

comes from the BitVM/BitVMX domain, where I approach the subject with

fresh eyes and an open mind.

I don’t use the same vocabulary.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

1. Why payment channels

2. Basic Payment Channel types

3. One Time Signatures in Bitcoin

4. OTS-based Payment Channel

5. BitVMX CPU & GC

6. BitVMX-Based Payment Channels

7. Summary

Agenda

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Why payment channels?

Bitcoin’s base layer (on-chain) has inherent throughput, latency, and cost

limitations:

● Blocks are finite in size and time (≈10 min average), so transactions

compete for space.

● Each on-chain transaction incurs a fee and confirmation delay.

● Many real-world use cases (micropayments, high-frequency payments)

cannot tolerate high fees or multi-minute wait times.

● Payment channels are a way to move repeated (or rapid) transactions

off-chain between parties, while still anchoring to the blockchain for

security and settlement.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Why payment channels?

Payment channels are a way to move transactions off-chain between parties,

while still anchoring to the blockchain for security and settlement.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Types of Payment Channels

Design Key Idea / Mechanism What problems it solves Drawbacks / tradeoffs

Nakamoto Transaction replacement before
confirmation (Unidirectional)

Early idea by Satoshi Very fragile; vuln. to
transaction malleability

Spillman-style Unidirectional, with expiration Enforced onchain. Simple. Unidirectional; Close before
expiry; malleability

CLTV-style
(CHECKLOCKTIMEVERIFY)

Use CLTV. Unidirectional, with
expiration

Eliminates malleability. Refund
enforced by scripts

Still unidirectional; expiration
is required;

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Types of Payment Channels

Design Key Idea / Mechanism What problems it solves Drawbacks / tradeoffs

Duplex /
Decker-Wattenhofer

Combine two opposite-direction
uni. channels + “invalidation tree”

(Almost) Bidirectional. Finite number of
invalidations. Complexity of
invalidation tree

Poon-Dryja /
“Lightning-style”

Lock funds in a 2-of-2 multisig. Bidirectional, indefinite updates,
HTLCs are core of LN

Complex. Requires careful
penalty logic

Eltoo / Decker
-Russell-Osuntokun

Simplify dispute logic: new state
“cancels” prior via a seq. number

Straightforward handling of
updates. Efficient Watchtowers

Requires sighash flags
ANYPREVOUT or NOINPUT.

Outpost /
Khabbazian et al.

Moves the heavy blob off the tower
(partially on-chain)

Efficient Watchtowers without
soft-fork. Enabled by
OP_RETURN > 80 bytes

Higher onchain cost and
protocol complexity.
Unilateral exit consumes
~1200 WU.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

New Types of Payment Channels

Design Key Idea / Mechanism What problems it solves Drawbacks / tradeoffs

OTS-Based Sign state updates sequence
numbers with OTS

Simple. Efficient Watchtowers. Unilateral exit consumes
~750 WU.
Disputes consume 750 WU.

BitVMX-Based Uses BitVMX for dispute resolution Efficient Watchtowers, Higher
Privacy, Full Programmability.

Unilateral exit consumes
~750 WU.
Disputes consume ~8000
WU

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

The one-time signature scheme is defined by three algorithms:

● OTKeyGen(λ) → (sk, pk).

The secret key is a

random value sk, and pk

is the associated public

key

● OTSign(sk, m) → σ. Where

sk is the secret key, m is the

message.

● OTVerify(pk, m, σ) →

Accept or reject a

signature.

One-Time Signatures

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Q0 Q1

H H

p0 p1

pk

sk

0 1
● OTKeyGen(λ) → (sk, pk). sk =

(p
0

,p
1

), pk= (Q
0

,Q
1

) such that

H(p
1

) = Q
1

 and H(p
0

) = Q
0

● OTSign(sk, m) → σ = {

if m=0 then p
0

 else p
1

 }

● OTVerify(pk, m, σ) → { if m=1 then

accept if H(σ)=Q
1

 else accept if

H(σ)=Q
0

 }

1-Bit Lamport Signatures

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

// Input sig (21b), m (1b)

OP_IF // 1

OP_HASH160

OP_PUSH <Q1> // 21b

OP_EQUALVERIFY

OP_ELSE // 0

OP_HASH160

OP_PUSH <Q0> // 21b

OP_EQUALVERIFY

OP_ENDIF

pk

sk

0 1

72 WU/bit
(incl. input)

or 18
vbytes/bit

32-bit -> 576
vbytes

Optimization:
f,t length can be 128-bits

Q0 Q1

H H

p0 p1

1-Bit Lamport Signatures

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

OTS-based Payment Channels

OTS-Based
Payment
Channel

OTS-Based
Payment
Channel

1. Start(i), Pay(i),
Assert(i) commit to each
new state i forcing the
signature of i to split funds.

2. RevokeXOldState(i)
punishes old states j (j< i)
to be signed.

3. Unilateral exit path is the
same for both parties:
Pre-images Pa/Pb are used
to decide which timeouts
apply

Setup

1. Pa and Pb such that (Ha =
H(Pa) and Hb = H(Pb)).

2. OTS key-pairs KA and KB
3. Setup tx onchain.
4. Pay(0), Assert(0), and

Start(0).

OTS-Based PC State Update (Alice pays Bob)

Alice’s signature
Bob’s signature

OTS-Based PC State Update (Alice pays Bob)

Alice’s signature
Bob’s signature

OTS-Based PC State Update (Alice pays Bob)

Alice’s signature
Bob’s signature

OTS-Based PC State Update (Alice pays Bob)

Alice’s signature
Bob’s signature

OTS-Based PC State Update (Alice pays Bob)

Alice’s signature
Bob’s signature

OTS-Based PC State Update (Alice pays Bob)

Alice’s signature
Bob’s signature

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

State Updates (Alice pays Bob)

1. Alice and Bob sign Pay(i) and Assert(i), AliceWins(i), BobWins(i),
TimeoutForAliceTx(i), TimeoutForBobTx(i) exchanging signatures.

2. Bob signs Start(i) and sends it to Alice. Now Alice can continue with either state, but Bob can only
use the old state. Since he received funds, Bob is motivated to proceed.

3. Alice sign RevokeAliceOldStates(i) and sends signature to Bob. Now Alice can only issue the
new state, while Bob can issue only the old state.

4. Alice co-signs Start(i) and sends it to Bob. Now Alice can only issue the old state, while Bob could
use either, but the new state benefits him more.

5. Bob sign RevokeBobOldStates(i) and sends signature to Alice. Now both Alice and Bob can only
issue the new state.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Penalization for the Use of an Old State

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

HTLCs

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Closing the Channel

Cooperative Close: they co-sign a payment transaction that spends directly the funds from the
Setup transaction.

Unilateral Close: (If one party becomes uncooperative)

● Publish the latest Start(i) and Assert(i)
● Wait for a potential dispute
● Publish Pay(i), which is timelocked to allow dispute resolution
● Collect funds from open HTLCs, if any.

Watchtower
Full Privacy

● Revoke/Win txs are encrypted with Ta (CBC) and a fresh IV each time.

● Alice can issue new fake “updates” at any rate if she doesn’t give Start ID.

● Hides: Update Rate (optionally), Channel ID and Amounts (until dispute)

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Watchtower Full Privacy

● Watchtower does not learn anything (except rate of updates) until dispute arises.

● Connecting the watchtower RevokeXOldStates(i) to the Start(i) transaction allows

hiding the channel an update belongs to

● Encrypting the watchtower transactions with new Ta/Tb secrets generated for each

state prevents the watchtower to discover the amounts

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

● New type of Payment Channel

● Constant space by Watchtowers: only needs the latest revocation transactions

● Storage: less than 2 Kbytes/channel to watch

● No Bitcoin soft-fork required

● Full Watchtower privacy until dispute

● Supports HTLCs

Summary: OTS-Based Payment Channels

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX CPU & GC

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX: A VCPU for Universal
Computation on Bitcoin

* Created by Robin Linus in 2023.

BitVMX is a framework designed to optimistically execute arbitrary
programs on Bitcoin, leveraging the 2-party disputable
computation paradigm introduced by BitVM(*).

Secure, extensible, and open-source.
BitVMX VCPU enables verifying RISC-V programs on Bitcoin.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX Protocol in a Nutshell

1. Prover posts the (authenticated) program input onchain

2. Verifier runs the computation locally on an VCPU, generates an execution trace.

3. The execution trace is dynamically converted into a step hash chain

4. Prover and verifiers engage in a verification game onchain, bisecting the hash chain.

5. The verifier looks for a “malfunction”: a correct step followed by an incorrect step.

6. Once it is found, the verifier requests more information about the steps

7. Challenger request proof of either: (1) hash chain step, (2) memory access, (3)

opcode execution.

8. If the prover does not provide proof on time, prover loses.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

● stepHash[step] → 20 bytes

○ stepHash[Start] = 0

○ stepHash[step] = Truncate20(Blake3(stepHash[step-1] || trace[step]))

stepHash[i-1] stepHash[i]

trace[i]
Blake3

trace[i+1]
Blake3 End

Start

BitVMX Step Hash Chain

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Trace halts at step F.

Input is <program
input>

Give me step
hash for step s1

Step hash for
step s1 is ….

Give me step
hash for step s2

Operator
(kick-off) Verifier Operator Verifier

….

Step Hash Chain Binary Search

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

 8

12

10

 11

 4

 2 6 14

15 7 3 5 13 9 1

 0 16

 16

 8

12

12

Malfunction

Malfunction Binary Search

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX-based Payment Channels

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX Revocation Messages

M(i) = “We revoke all states prior i”

SA SBSchnorr signatures

BitVMX
Payment
Channel

Added:
- Dispute channels
- KA2,KB2
- Sa and Sb

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX
HTLCs

Privacy support:

- Point Time Locked Contracts (PTLCs)

- y = H(x) = xG (EC-DLOG)

- Groth16 (ZKP)

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX-Based Payment Channels

● New type of Payment Channel

● Constant space per channel for watchtowers

● No Bitcoin soft-fork required

● Supports HTLCs including hash functions that preserve route privacy

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX vs BitVM2 (Schnorr Signature Verification)

● 1 sats/vbyte feerate, 100K USD/BTC rate
● Dual input (proof / counter-proof)
● BitVMX 8-ary search (current protocol)
● BitVMX GC Protocol Estimation depends on future research (current estimation is 7M non-free gates)

Protocol Type Scalability Standard
Txs?

Rounds Worst Case
WU

Cost (*)
USD

BitVM2 with
counter-proof

Single purpose
(Schnorr/SNARK)

O(√C) No 2 ~ 432 K ~108

BitVMX Generic (RISC-V) O(Log C) Yes 5 ~ 332 K ~83

BitVMX GC
(garbled circuits)

Generic / Schnorr
SNARK

O(1) Yes 2 ~67 K ~16

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Growing from a Protocol to a Platform

RISC-V CPU Garbled
Circuits TOOP ESSPIFLEX

BATTLE WISCH DV-SNARK

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Summary

● Presented two new types of payment channel: OTS and BitVMX.

● Supports efficient and private watchtowers

● Supports HTLCs including Point Time Locked Contracts (PTLCs) and other

privacy-preserving improvements

● Based on BitVM ideas (OTS) and BitVMX

● BitVMX implements a BitVM-style VCPU.

● BitVMX is the BitVM that works. It’s cheap, robust and flexible

● Fairgate’s Garbled Circuits (upcoming)

● We’re just scratching the surface of GC applications on Bitcoin.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

https://github.com/FairgateLabs https://bitvmx.org

www.fairgate.io

Thank You!

Q&A

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Setup

1. Each owner chooses a hidden pre-image (Pa by Alice and Pb by Bob) and sends
the other the corresponding hash (Ha = H(Pa) and Hb = H(Pb)).

2. Each owner generates an OTS key pair (pair KA1 for Alice and KB1 for Bob) for
signing sequence values i, in Assert using 32-bit unsigned integers to allow up
to 4 billion updates. Public keys are exchanged.

3. Both parties construct a the transaction Setup and issues it onchain.
4. Parties create the initial transactions: Pay(0), Assert(0), and Start(0). These

define an initial exit path where each owner can withdraw their initial deposit. No
revocation messages exist at this point, so no challenges are possible

5. Each owner generates another OTS key pair (KA2 by Alice, KB2 by Bob) for i
values in AliceWins, BobWins transactions.

6. If watchtowers are used, they provide their OTS public keys to the owners

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Open Problems under Active Research

● Liquidity & channel balancing

● Routing algorithms

● Channel fees

● Payment Privacy

● Congestion

● Economic incentives & fee markets

● Scalability of state / channel graphs

● Cross-chain and interoperability

● Complexity in multi-party or general-purpose channels

● Usability / UX

● Watchtower efficiency

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Watchtowers

● Watchtowers receive periodic revocation messages M(i) for a given payment
channel, identified by a monitoring ID (MoId). The MoId is derived from the
channel’s funding transaction ID and the owner’s public key. If the same
watchtower monitors both parties, each will have a distinct MoId.

● When a watchtower receives a new revocation M(i), it can safely discard all
prior revocations for the same MoId. This is a significant improvement over
Lightning Network watchtowers, which must store a revocation key for every
state update. Thanks to BitVMX’s ability to verify complex logic off-chain,
revocations become more storage-efficient and secure.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

CROWN: Privacy & data exposure

● Watchtowers see “appointment blobs” (encrypted data) plus locators. These blobs are

designed so the watchtower can’t see your balances or states except during a breach.

● But the watchtower learns which channels you update, the frequency of updates,

and when a breach is triggered.

https://docs.lightning.engineering/the-lightning-network/payment-channels/watchtowers?utm_source=chatgpt.com

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Sub-protocols

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

HTLCs Explanation

● To create an HTLC-based payment, both parties move to a new state where the payment amount is deducted from the
sender’s balance but not yet credited to the receiver. Instead, the amount is locked in a new output of PayTx(i), controlled
by a BitVMX instance. This instance is dynamically created per HTLC, but the BitVMX DAG can be mostly precomputed. The
output is connected to the BitVMX program only when the HTLC is initialized.

● The sender also produces a Schnorr-signed commitment C(i) that includes the current sequence number i, the conditional
payment amount, and the hash y(i) where y(i) = H(x(i)). The secret preimage x(i) will unlock the payment.

● To support multiple HTLCs, C(i) could be structured as the Merkle root of all active HTLCs.

● Assuming Alice is the sender, Bob can later reveal the preimage x(i) to settle the payment. Ideally, both parties cooperate to
update their balances accordingly. However, if Alice refuses, Bob may initiate a dispute by revealing the signed commitment
C(j), the preimage x(i), and showing that H(x(i)) = y(i).

● If Bob is dishonest and j < i, Alice can respond with Bob’s previously signed revocation message Mb(i), invalidating Bob’s
claim and earning the channel funds as compensation. If she cannot provide such a revocation, Bob wins the dispute and
claims the HTLC-locked funds. Crucially, the rest of the channel balance is unaffected by disputes over individual HTLCs.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Advancing to the Next State (Alice pays Bob)

1. Alice and Bob sign PayTx(t) and AssertTx(i), exchanging signatures.

2. Bob signs StartTx(t) and sends it to Alice. Now Alice can continue with either state, but Bob
can only use the old state. Since he received funds, Bob is motivated to proceed.

3. Alice gives Bob a revocation message Ma(i), which is a Schnorr signature on i, representing:
“I, Alice, revoke all states prior to i.” Now Alice can only use the new state.

4. Alice co-signs StartTx(t) and sends it to Bob. Alice can only use the new state; Bob could
use either, but the new state benefits him more.

5. Bob forwards Alice’s revocation to his watchtower and issues his own revocation message
Mb(i) to Alice. At this point, neither party can safely use the old state.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Liveness Guarantees During State Transitions

1. To prevent a party from stalling the protocol mid-update, the channel includes a

timeout mechanism. If Alice issues StartTx(j) but delays or refuses to issue the

corresponding AssertTx(j) in a timely manner, Bob can respond by publishing

TimerForAliceTx. This transaction initiates a countdown, giving Alice a limited

window to publish AssertTx(j). If Alice fails to do so before the timer expires, Bob

may publish TimeoutForAliceTx, which awards him all funds in the channel as a

penalty for Alice’s non-cooperation.

2. The timer is triggered using the preimage Pa, which Alice reveals when she

publishes StartTx(j). This ensures that only Alice can start this process, and only

Bob can enforce the timeout based on her actions.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Watchtower Efficiency

● Penalty-based LN channels (Poon–Dryja) need “bulky” watchtowers: each time a channel state updates,

the client sends the watchtower a fresh hint + encrypted-blob for that specific old state. Towers must keep

one blob per prior state until the channel closes (storage grows linearly with the number of updates).

● Eltoo-style channels (requires ANYPREVOUT/NOINPUT) make towers O(1): a tower only needs data for

the latest state, because newer states cleanly supersede older ones.

● Outpost / Khabbazian et al. Tower decrypts justice transaction from unilateral exit transactions.
Requires OP_RETURN payload > 80 bytes.

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Proofs and Counter-Proofs

