5 5 < e o oo . .
5 - .
e . . o o ® s $

. 00 e o 5
» .
. . . S . " LA

secto0ce,,

Sergio Demian Lerner | CTO, Fairgate Labs OCT 2025

Disclaimer

| am not an expert on the Lightning Network protocol. My perspective

comes from the BitVM/BitVMX domain, where | approach the subject with

fresh eyes and an open mind.

| don’t use the same vocabulary.

a Fairgate

) BitvMX

Agenda

1.
2
3
4.
5
6
7.

a Fairgate

Why payment channels

Basic Payment Channel types
One Time Signatures in Bitcoin
OTS-based Payment Channel
BitVMX CPU & GC

BitVMX-Based Payment Channels

Summary

) BitvMX

Why payment channels?

Bitcoin's base layer (on-chain) has inherent throughput, latency, and cost
limitations:
e Blocks are finite in size and time (=10 min average), so transactions
compete for space.
e Eachon-chaintransaction incurs a fee and confirmation delay.
e Many real-world use cases (micropayments, high-frequency payments)

cannot tolerate high fees or multi-minute wait times.

a Fairgate

) BitvMX

Why payment channels?

Payment channels are a way to move transactions off-chain between parties,

while still anchoring to the blockchain for security and settlement.

a Fairgate

) BitvMX

Types of Payment Channels

Design

Key Idea / Mechanism

What problems it solves

Drawbacks / tradeoffs

Nakamoto

Transaction replacement before
confirmation (Unidirectional)

Early idea by Satoshi

Very fragile; vuln. to
transaction malleability

Spillman-style

Unidirectional, with expiration

Enforced onchain. Simple.

Unidirectional; Close before
expiry; malleability

CLTV-style
(CHECKLOCKTIMEVERIFY)

Use CLTV. Unidirectional, with
expiration

Eliminates malleability. Refund
enforced by scripts

Still unidirectional; expiration
is required;

a Fairgate

) BitvMX

Types of Payment Channels

Design

Key Idea / Mechanism

What problems it solves

Drawbacks / tradeoffs

Duplex /
Decker-Wattenhofer

Combine two opposite-direction
uni. channels + “invalidation tree”

(Almost) Bidirectional.

Finite number of
invalidations. Complexity of
invalidation tree

Poon-Dryja /
“Lightning-style”

Lock funds in a 2-of-2 multisig.

Bidirectional, indefinite updates,
HTLCs are core of LN

Complex. Requires careful
penalty logic

Eltoo / Decker
-Russell-Osuntokun

Simplify dispute logic: new state
“cancels” prior via a seq. number

Straightforward handling of
updates. Efficient Watchtowers

Requires sighash flags
ANYPREVOUT or NOINPUT.

Outpost /
Khabbazian et al.

Moves the heavy blob off the tower
(partially on-chain)

Efficient Watchtowers without
soft-fork. Enabled by
OP_RETURN > 80 bytes

Higher onchain cost and
protocol complexity.
Unilateral exit consumes

a Fairgate

~1200 WU.
) BitvMX

New Types of Payment Channels

Design

Key Idea / Mechanism

What problems it solves

Drawbacks / tradeoffs

OTS-Based

Sign state updates sequence
numbers with OTS

Simple. Efficient Watchtowers.

Unilateral exit consumes
~750 WU.
Disputes consume 750 WU.

BitVMX-Based

Uses BitVMX for dispute resolution

Efficient Watchtowers, Higher
Privacy, Full Programmability.

Unilateral exit consumes
~750 WU.

Disputes consume ~8000
wu

a Fairgate

) BitvMX

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

One-Time Signatures

The one-time signature scheme is defined by three algorithms:

e OTKeyGen(A) — (sk, pk). e OTSign(sk, m) — 0. Where e OTVerify(pk,m,o) —
The secret keyisa sk is the secret key, mis the Accept or reject a
random value sk, and pk message. signature.

is the associated public

key

a Fairgate ® BitVMX

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

1-Bit Lamport Signatures

e OTKeyGen(\) — (sk, pk).sk =
(p,P,), Pk=(Q,Q,) such that
H(p,) = Q,and H(p,) = Q,

e OTSign(sk,m) — o ={
if m=0then p,else p, }

e OTVerify(pk,m,o) — {if m=1then
accept if H(0)=Q, else accept if

H(o)=Q,}
a Fairgate

sk

0 1
Po P,
QO Q]

) BitvMX

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

1-Bit Lamport Signatures

B O 1
// Input sig (21b), m (1b)
P P
oP_IF // 1 sk : |
OP_HASH160
OP_PUSH <Q1> // 21b
OP_EQUALVERIFY 72 WU/blt
OP_ELSE // 0 (incl. input)
OP_HASH160
OP_PUSH <Q0> // 21b | 1. 1g ok Q, Q,
OP_EQUALVERIFY beteS/blt
OP ENDIF . .
- _ Optimization:
32-bit -> 576 ft length can be 128-bits
a Fairgate] betes ® BitVMX

a Fairgate

OTS-based Payment Channels

) BitvMX

OTS-Based
Payment
Channel

a Fairgate

OTS-Based Bidirectional Payment Channel

TimeoutForBob(i
N Take
[Published by either Alice or Bob 1 Timelock cov
Alice
|:| Published by a watchtower Funds
[published by Bob f cov
[published by Alice TimeoutForAlice(i)
[unilatral exit. Published by either A TimeLock | Take with Pa
party
Bob
- Funds
Ld
cov
Setup
Initial Funds € AIiceSpends
_— start(i) Assert(i) Ray(l) Alice
Alice . o Funds | ABal(i) to _ﬁ
Assert. Requires either: Publishes Requires i OT- i cov Alice
1) Pa such that H(Pa)=Ha |————&—{ either Pa or Pb | Signed by A or » cov . BobSpends
2) Pb such that H(Pb)=Hb cov B with KA or KB feacyR[REBEI(p
Timelock oY Bob
Bob
Bob Disputes
From Alice Disputes — [L =/>
Bob " .
WTB Disputes —— BobWins(i)
RevokeAliceOldStates(i) All funds
WTA Disputes cov
Bob against Alice Requiresizi ErETle
«l quires j<i N > Publishes j
£OY OT-signed by Alice (KA) cov.
AliceWins(i)
RevokeBobOldStates(i) | Allfunds
L
COoV .
Requiresil<i R rEpes Alice
L equires j <i - A ublishes j
cov . \—>
Alice against Bob OT-signed by Bob (KB) Ccov
i % BobAndWTBWin(i
WTBRevokesAliceOldStates(i) Al fords .
P Bob
COV
L Watchtower against Alice al Requires j <i w| Publishes j
g | O OT-signed by Alice (KA) cov Wie

“—————PWatchtower against Bob

OTS-Based
Payment
Channel

1. Start(i), Pay(i),
Assert(i) commit to each
new state i forcing the
signature of i to split funds.

2. RevokeX0ldState(i)
punishes old states j (j<i)
to be signed.

3. Unilateral exit path is the
same for both parties:
Pre-images Pa/Pb are used
to decide which timeouts

apply

a Fairgate

OTS-Based Bidirectional Payment Channel

TimeoutForBob(i)

N Take
[Published by either Alice or Bob 1 Timelock cov
Alice
|:| Published by a watchtower & Funds
[published by Bob 71 cov
[published by Alice TimeoutForAlice(i)
Uni it. : : TimeLock
|:| nilatral exit. Published by either A | Take with Pa
party Bob
«| Funds
Ld
cov
Setup
Initial Funds € AIiceSpends
From Start(i) Assert(i) Pay(i) i
Alice _ o Funds | ABal(i) to _f_>
Assert. Requires either: Publishes Requires i OT- i cov Alice
1) Pa such that H(Pa)=Ha |————&—{ either Pa or Pb | Signed by A or » cov . BobSpends
2) Pb such that H(Pb)=Hb cov B with KA or KB el (R i a
Timelock SO Bob
Bob
Bob Disputes
From Alice Disputes — L ;/>
Bob 2 a
WTB Disputes —— BobWins(i)
RevokeAliceOldStates(i) All funds
WTA Disputes CoV
Bob against Alice Requiresizi = P
«l quires j <i N > Publishes j
£OY OT-signed by Alice (KA) cov.
AliceWins(i)
RevokeBobOldStates(i) | Allfunds
e cov .
Requires j <i Publishes j [
cov . —f'\—>
Alice against Bob OT-signed by Bob (KB) Ccov
i % BobAndWTBWin(i
WTBRevokesAliceOldStates(i) Al fords :
P Bob
CoV
Watchtower against Alice q Requires j <i w| Publishes j
g | O OT-signed by Alice (KA) cov Wie

“—————PWatchtower against Bob

OTS-Based Bidirectional Payment Channel

Setup

N Take
[Published by either Alice or Bob f Timelock = cov
Ali
[Published by a watchtower Funds e
[published by Bob f "l cov
1. Paand Pb such that (Ha = L pubtishea by Aice TimeoutForAlice(i
. . ; : a TimeLock
H P d H b _ H P b |:| ﬁ:rll;tral exit. Published by either A »| Take with Pa
(Pa) an = H(Pb)). aoh
. -l Funds
Ld
2. OTS key-pairs KA and KB Setup L
3. Setup tx onchain.) ,
4 P 0 A @ d Initial Funds < AliceSpends
. ay () , Assert () , adn Hrom start(i) Assert(i) Pay(i) Aice
Alice o Funds | ABal(i)to l
S -t a r -t @ . Assert. Requires either: Publishes Requires i OT- i cov Alice
1) Pa such that H(Pa)=Ha L —C—P| either Pa or Pb | Signed by A or > -
2) Pb such that H(Pb)=Hb cov B with KA or KB (€ Ready | BBal()to BobSpends
. cov Bob
Timelock Bob
Bob Disputes
From Alice Disputes — L =/>
e WTB Disputes ~ |—— BobWins(i)
RevokeAliceOldStates(i) All funds
WTA Disputes — "l___cov
Bob against Alice M| o Requires j <i A »| Publishes | Bob
OT-signed by Alice (KA) cov.
AliceWins(i)
RevokeBobOldStates(i) | Allfunds
L
g Alice
L cov Requires j <i A) Publishes j
Alice against Bob OT-signed by Bob (KB) (€)%
s . BobAndWTBWin(i
WTBRevokesAliceOldStates(i) Al fond (
— unds | o
COV
Watchtower against Alice q Requires j <i w| Publishes j
g | O OT-signed by Alice (KA) cov Wie

a FOWgOte “—————PWatchtower against Bob

OTS-Based PC State Update (Alice pays Bob)

Setup J '
oo Y
Initial Funds < AliceSpends
From Start(i) Assert(i) Pay(i) Alice
Alice . - Funds | ABal(i) to l
Assert. Requires either: Publishes Requires i OT- i cov Alice
1) Pa such that H(Pa)=Ha |————&—] either Pa or Pb | Signed by A or ' 4 cov - BobSpends
2) Pb such that H(Pb)=Hb cov B with KA or KB 1—) bl Rl P
; cov Bob
Timelock Bob
Bob Disputes —
From Alice Disputes — L ><>
Bob e
© WTB Disputes BobWins(i)
RevokeAliceOldStates(i) p| Allfunds
WTA Disputes cov
L Bob against Alice licon Requires j < i A p| Publishes Bob
OT-signed by Alice (KA) cov
AliceWins(i)
ey e
O Alice’s signature
) e
O Bob's signature

a Fairgate @ BitVMX

OTS-Based PC State Update (Alice pays Bob)

Setup
- c
Initial Funds C AliceSpends
From Start(i) Assert(i) Pay(i) Alice
Alice Funds | ABal(i) to l
Assert. Requires either: Publishes Requires i OT- i cov Alice
1) Pa such that H(Pa)=Ha |————&—] either Pa or Pb | Signed by A or cov - BobSpends
2) Pb such that H(Pb)=Hb cov B with KA or KB Ready: | BBAIBto P
Timelock coy Bob
Bob
Bob Disputes —
From Alice Disputes — L ><>
Beb WTB Disputes —— BobWins(i)
RevokeAliceOldStates(i) 3| Allfunds
WTA Disputes — cov
L Bob against Alice lico Requires j<i A > Publishes j Bab
OT-signed by Alice (KA) cov
(:O AliceWins(i)
RevokeBobOldStates(i)) All funds
Ccov .
Requires j <i Publishes j fle
., \ »| cov) 4k »
O Alice’s Slgnatu re Alice against Bob QF=signesioyBobiia) Lol
’ .
O Bob's signature

a Fairgate @ BitVMX

OTS-Based PC State Update (Alice pays Bob)

Setup L
- c
Initial Funds € AliceSpends
From Start(i) Assert(i) Pay(i) Alice
Alice . - Funds | ABal(i) to l
Assert. Requires either: Publishes Requires i OT- i cov Alice
1) Pa such that H(Pa)=Ha either Pa or Pb | Signed by A or cov . BobSpends
2) Pb such that H(Pb)=Hb cov B with KA or kB Reany | Bela P
Timelock G0y Bob
Bob
Bob Disputes —
From Alice Disputes — L ><>
Beb WTB Disputes —— BobWins(i)
RevokeAliceOldStates(i) 3| Allfund
WTA Disputes — C;C ’
L Bob against Alice llcay Requires j <i A > Publishes j Bot
OT-signed by Alice (KA) cov
(:O AliceWins(i)
RevokeBobOldStates(i)) All funds
cov)
Requires j <i Publishes j s
.. . » cov) 4k »
OA“CG S S|gnature Alice against Bob OT-signed by Bob (KB) cov
) .
O Bob’s signature

a Fairgate @ BitVMX

OTS-Based PC State Update (Alice pays Bob)

Setup L
- c
Initial Funds < AliceSpends
From Start(i) Assert(i) Pay(i) Alice
Alice Funds | ABal(i) to l
Assert. Requires either: Publishes Requires i OT- i cov Alice
1) Pa such that H(Pa)=Ha either Pa or Pb | Signed by A or cov - BobSpends
2) Pb such that H(Pb)=Hb cov B with KA or KB Ll) P
Timelock coy Bob
Bob
Bob Disputes —
From Alice Disputes — L ><>
Bob . e
© WTB Disputes —— BobWins(i)
RevokeAliceOldStates(i) All fund
WTA Disputes — > c;r\]/ 2
L Bob against Alice - Requires j<i A > Publishes j Bab
OT-signed by Alice (KA) cov
(:O AliceWins(i)
RevokeBobOldStates(i)) All funds
Ccov)
Requires j <i Publishes j fle
., \ »| cov) 4k »
O Alice’s signature Alice-agalnstEob OT-signed by Bob (KB) cov
’ .
O Bob's signature

a Fairgate @ BitVMX

OTS-Based PC State Update (Alice pays Bob)

Setup

From
Alice

Initial Funds

/M

Start(i)

Assert. Requires either:
1) Pa such that H(Pa)=Ha
2) Pb such that H(Pb)=Hb

From
Bob

Bob Disputes

Alice Disputes

Publishes
either Pa or Pb
cov

Requires i OT-
Signed by A or
B with KA or KB

WTB Disputes

WTA Disputes

OAIice’s signature
OBob’s signature

a Fairgate

Bob against Alice

Alice against Bob

AliceSpends
Assert(i) Pay(i) Hlice
Funds | ABal(i) to l
i cov Alice
cov Ready BBal(i) to BobSpends
Timelock |9 Bob Bob
BobWins(i)
RevokeAliceOldStates(i) All funds
COV Bob
Requires j <i A Publishes j
S OT-signed by Alice (KA) d CcoVv
(:O AliceWins(i)
RevokeBobOldStates(i)) All funds
V
Requires j <i P bcloh =
A ublishes j
ey OT-signed by Bob (KB) q cov

) BitvMX

OTS-Based PC State Update (Alice pays Bob)

Setup

From
Alice

Initial Funds

/M

Start(i)

Assert. Requires either:
1) Pa such that H(Pa)=Ha
2) Pb such that H(Pb)=Hb

From
Bob

Bob Disputes

Alice Disputes

Publishes
either Pa or Pb
cov

Requires i OT-
Signed by A or
B with KA or KB

WTB Disputes

WTA Disputes

OAIice’s signature
OBob’s signature

a Fairgate

Bob against Alice

Alice against Bob

AliceSpends
Assert(i) Pay(i) Hlice
Funds | ABal(i) to l
i cov Alice
cov Ready BBal(i) to BobSpends
Timelock [_<2¥ Bob Bob
BobWins(i)
RevokeAliceOldStates(i) All funds
COV Bob
Requires j <i A Publishes j
N OT-signed by Alice (KA) d CcoVv
(:O AliceWins(i)
RevokeBobOldStates(i)) All funds
V
Requires j <i P bcloh =
A ublishes j
COV OT-signed by Bob (KB) q cov

) BitvMX

State Updates (Alice pays Bob)

a Fairgate

Alice and Bob sign Pay (i) and Assert (i), AliceWins (i), BobWins(1i),
TimeoutForAliceTx(i), TimeoutForBobTx (i) exchanging signatures.

Bob signs Start (i) and sends it to Alice. Now Alice can continue with either state, but Bob can only
use the old state. Since he received funds, Bob is motivated to proceed.

Alice sign RevokeAliceOldStates(i) and sends signature to Bob. Now Alice can only issue the
new state, while Bob can issue only the old state.

Alice co-signs Start (i) and sends it to Bob. Now Alice can only issue the old state, while Bob could
use either, but the new state benefits him more.

Bob sign RevokeBob0ldStates (i) and sends signature to Alice. Now both Alice and Bob can only
issue the new state.

) BitvMX

Penalization for the Use of an Old State

Setup

From
Alice

Initial Funds

j=50, i=100

\N/

Assert. Requires either:
1) Pa such that H(Pa)=Ha
2) Pb such that H(Pb)=Hb

From
Bob

Bob Disputes

Alice Disputes

N\

AliceSpends

WTB Disputes

WTA Disputes

a Fairgate

Bob against Alice

cov Requires j <i (50 < 100)

OT-signed by Alice (KA1) Publishes j
(signed by
KA)

cov

start(j) Assert(j) Pay(j) | e
ER— o Funds ABal(i) to
) equires j OT- = cov Alice
| | PR by Alon »| (signed by KA) : BobSpend
Lox B with KA or KB cov Ready | BBal(lyto e
Timelock SOY Bob Bob
BobWins(i)
RevokeAliceOldStates(i) All funds
CoV

Bob

) BitvMX

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

HTLCs

a Fairgate

Pay(i)

—> Alice
—> Bob
(1) Hash-lock
pre-image and Bob sig
Bob
(2) Absolute
timelock and Alice Sig
Alice
(2) Absolute
timelock and Bob Sig
Bob
(1) Hash-lock
pre-image and Alice si
g) Alice

) BitvMX

Closing the Channel

Cooperative Close: they co-sign a payment transaction that spends directly the funds from the
Setup transaction.

Unilateral Close: (If one party becomes uncooperative)

Publish the latest Start (i) and Assert (i)

Wait for a potential dispute

Publish Pay (1), which is timelocked to allow dispute resolution
Collect funds from open HTLCs, if any.

a Fairgate @ BitVMX

Watchtower e Revoke/Win txs are encrypted with Ta (CBC) and a fresh IV each time.
FUU. PrlvaCy e Alice canissue new fake “updates” at any rate if she doesn’t give Start ID.

e Hides: Update Rate (optionally), Channel ID and Amounts (until dispute)

Setup
Initial Funds AliceSpends
. start(i) Assert(i) Pay(®) | e
Alice Requires i OT- : Funds | ABal(i) to
Assert. Requires either: Signed by A or : cov Alice
1) Pa such that H(Pa)=Ha Publishes | g with KA or kB > Tam ~ BobSpends
| e : Cov I y| Ready | BBall)to P
2) Pb such that H(Pb)=Hb either Pa or Pb Requiere Ta/Tb cov
cov N Timelock Bob Bob
Bob Disputes WTBDispute — _ _ _ _ _ _ _ _ _ _ e e ___--__C
’ ~
/ . . \
EEom Alice Disputes WTBRevokesAliceOldStates(i) BobAndWTBWin(i) !
Bob . All funds Bob | 1
WTB Disputes COV 1
Requires j <i i i 1
cov .) ——) Publishes j
WTA Disputes Watchtower against Alice | OT-signed by Alice (KA) cov. Wik :
1
1

- am e e e Em e e e e e Em e e Em e Em e e Em e e e e o -

=] Encrypted with Ta VMX

Watchtower Full Privacy

e Watchtower does not learn anything (except rate of updates) until dispute arises.
e Connecting the watchtower RevokeXOldStates(i) to the Start(i) transaction allows

hiding the channel an update belongs to

e Encrypting the watchtower transactions with new Ta/Tb secrets generated for each

state prevents the watchtower to discover the amounts

a Fairgate

) BitvMX

Summary: OTS-Based Payment Channels

e New type of Payment Channel

e Constant space by Watchtowers: only needs the latest revocation transactions
e Storage: less than 2 Kbytes/channel to watch

e No Bitcoin soft-fork required

e Full Watchtower privacy until dispute

e Supports HTLCs

a Fairgate @ BitVMX

a Fairgate

BitVMX CPU & GC

) BitvMX

a Fairgate

BitVMX: A VCPU for Universal
Computation on Bitcoiln

BitVMX is a framework designed to optimistically execute arbitrary
programs on Bitcoin, leveraging the 2-party disputable
computation paradigm introduced by BitVM(¥).

Secure, extensible, and open-source.
BitVMX VCPU enables verifying RISC-V programs on Bitcoin.

* Created by Robin Linus in 2023.

() BitvMX

BitVMX Protocol in a Nutshell

N o 0k Db

8.

Prover posts the (authenticated) program input onchain

Verifier runs the computation locally on an VCPU, generates an execution trace.
The execution trace is dynamically converted into a step hash chain

Prover and verifiers engage in a verification game onchain, bisecting the hash chain.
The verifier looks for a “malfunction”: a correct step followed by an incorrect step.
Once it is found, the verifier requests more information about the steps

Challenger request proof of either: (1) hash chain step, (2) memory access, (3)
opcode execution.

If the prover does not provide proof on time, prover loses.

a Fairgate @ BitVMX

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX Step Hash Chain

e stepHash[step] — 20 bytes

o stepHash[Start] =0
o stepHash[step] = Truncate20(Blake3(stepHash[step-1] || trace[step]))

stepHashl[i-1] —— —>»| stepHash[i] [—
Blake3 Blake3 - >
tracel[i] trace[i+l]] —

ra Fairgate ¥ BitvMX

Step Hash Chain Binary Search

Operator
(kick-off)

Verifier

Operator

Verifier

Trace halts at step F.

Input is <program
input>

Give me step
hash for step s,

Step hash for
step s, is

Give me step
hash for step s,

a Fairgate

) BitvMX

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

Malfunction Binary Search

Malfunction

a Fairgate ® BitVMX

a Fairgate

BitVMX-based Payment Channels

) BitvMX

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX Revocation Messages

M(i) = “We revoke all states prior i”

Schnorr signatures

ra Fairgate ¥ BitvMX

BitVMX
Payment
Channel

Added:

OTS-Based Bidirectional Payment Channel

- Dispute channels

- KA2,KB2
- Saand Sb

a Fairgate

TimeoutForBob(i
q Take
[published by either Alice or Bob Timelock cov
Alice
|:| Published by a watchtower g Funds
[] published by Bob 1 cov
[published by Alice TimeoutForAlice(i)
D Unilatral exit. Published by either S TimeLock | Take with P.
ARy ake with Pa -
ol
-l Funds
cov
Setup
Initial Funds € AliceSpends
From Start(i) Assert(i) Pay(i) .
Alice ' Requires i OT- Funds | ABal(i) to
Assert. Requires either: Publishes S or i cov Alice
-Ha |———€—] either Paor Pb | > A
1) Pa such that H(Pa)_Ha o B with KA1 or cov Ready | BBal()to BobSpends
2) Pb such that H(Pb)=Hb C
KB1 : cov Bob
Timelock Bob
Bob Disputes
From Alice Disputes — L =/>
Bob e .
WTB Disputes E— BobWins(i)
RevokeAliceOldStates(i) Dispute channel o] Allfunds
WTA Disputes — COV.
Requires] S Bob against Alice A Bob
COV | OT-signed by Alice (KA1) ' 4 3 8 Win e — cov
and Bob (KB2) + Sh(i) Dispute channel AW)
1cewins(li
RevokeBobOldStates(i) Dispute channel All funds
cov .
RS0 Watchtower against Alice alce
| cov | oT-signed by Bob (KB1) < R cﬁannel win |—"P—» cov
and Alice (KA2) + Sa(i) B
= 3 BobAndWTBWin(i)
WTBRevokesAliceOldStates(i) Dispute channel All funds
—> Bob
A COV.
M) S] Alice against Bob
“———| COV | OT-signed by Alice (KA1) > & win cov WTB

and Bob (KB2)

Dispute channel

———P»Watchtower against Bob

) BitvMX

BitVMX
HTLCs

!

Absolute
timelock and Alice Sig

Pay(i)
ABal(i) Alice
Funds
BBal(i) Bob
HTLC Funds
Ready HTLC Dispute
cov Requires: pre-

image x(i) and
fixed hash y(i)
OT-Signed

Privacy support:

a Fairgate

Bob against Alice

BobInput

Dispute channel

P Alice
> Bob
Alice

X(i), y(i)

Bob against Alice

Win

All funds

Dispute channel

Lose

é BobWinsHTLCTx
P

Bob Wins

Bob

Point Time Locked Contracts (PTLCs)
y = H(x) = xG (EC-DLOG)
Groth16 (ZKP)

liceWinsHTLCTx

All funds

:

Alice wins

Alice

) BitvMX

BitVMX-Based Payment Channels

a Fairgate

New type of Payment Channel
Constant space per channel for watchtowers
No Bitcoin soft-fork required

Supports HTLCs including hash functions that preserve route privacy

) BitvMX

Building Secure and Watchtower-efficient Bitcoin Payment Channels with BitVMX

BitVMX vs BitVM2 (Schnorr Signature Verification)

Protocol Scalability Standard Rounds Worst Case Cost (*)

Txs? wWu uSD

BitVM2 with Single purpose O(/C) No 2 ~ 432K ~108
counter-proof (Schnorr/SNARK)

1 sats/vbyte feerate, 100K USD/BTC rate

Dual input (proof / counter-proof)

BitVMX 8-ary search (current protocol)

BitVMX GC Protocol Estimation depends on future research (current estimation is 7M non-free gates)

ra Fairgate ¥ BitvMX

Growing from a Protocol to a Platform

BitVMX
QO BIVM

G?rb'.eg }[FLEX [TOOP J[ESSPI }

[RISC-V CPU

BATTLE } [WISCH } [DV-SNARK 1

Summary

e Presented two new types of payment channel: OTS and BitVMX.

e Supports efficient and private watchtowers

e Supports HTLCs including Point Time Locked Contracts (PTLCs) and other
privacy-preserving improvements

e Basedon BitVM ideas (OTS) and BitVMX

e BitVMXimplements a BitVM-style VCPU.

e BitVMXisthe BitVM that works. It's cheap, robust and flexible

e Fairgate’s Garbled Circuits (upcoming)

e We'rejust scratching the surface of GC applications on Bitcoin.

a Fairgate

) BitvMX

O Thank You! (39) BitvMX

https://github.com/FairgatelLabs https://bitvmx.org

Setup

A w

a Fairgate

Each owner chooses a hidden pre-image (Pa by Alice and Pb by Bob) and sends
the other the corresponding hash (Ha = H(Pa) and Hb = H(Pb)).

Each owner generates an OTS key pair (pair KA1 for Alice and KB1 for Bob) for
signing sequence values 1, in Assert using 32-bit unsigned integers to allow up
to 4 billion updates. Public keys are exchanged.

Both parties construct a the transaction Setup and issues it onchain.

Parties create the initial transactions: Pay(0), Assert(0), and Start(0). These
define an initial exit path where each owner can withdraw their initial deposit. No
revocation messages exist at this point, so no challenges are possible

Each owner generates another OTS key pair (KA2 by Alice, KB2 by Bob) for i
values in AliceWins, BobWins transactions.

If watchtowers are used, they provide their OTS public keys to the owners

) BitvMX

Open Problems under Active Research

a Fairgate

Liquidity & channel balancing

Routing algorithms

Channel fees

Payment Privacy

Congestion

Economic incentives & fee markets

Scalability of state / channel graphs

Cross-chain and interoperability

Complexity in multi-party or general-purpose channels
Usability / UX

Watchtower efficiency

) BitvMX

Watchtowers

® \Watchtowers receive periodic revocation messages M(i) for a given payment

a Fairgate

channel, identified by a monitoring ID (MoId). The MoId is derived from the
channel’s funding transaction ID and the owner’s public key. If the same
watchtower monitors both parties, each will have a distinct MoId.

When a watchtower receives a new revocation M(1), it can safely discard all
prior revocations for the same MoId. This is a significant improvement over
Lightning Network watchtowers, which must store a revocation key for every

state update. Thanks to BitVMX’s ability to verify complex logic off-chain,
revocations become more storage-efficient and secure.

) BitvMX

CROWN: Privacy & data exposure

e Watchtowers see “appointment blobs” (encrypted data) plus locators. These blobs are
designed so the watchtower can’t see your balances or states except during a breach.

e Butthe watchtower learns which channels you update, the frequency of updates,
and when a breach is triggered.

a Fairgate @ BitVMX

https://docs.lightning.engineering/the-lightning-network/payment-channels/watchtowers?utm_source=chatgpt.com

a Fairgate

Sub-protocols

) BitvMX

HTLCs Explanation

® To create an HTLC-based payment, both parties move to a new state where the payment amount is deducted from the
sender’s balance but not yet credited to the receiver. Instead, the amount is locked in a new output of PayTx (1), controlled
by a BitVMX instance. This instance is dynamically created per HTLC, but the BitVMX DAG can be mostly precomputed. The
output is connected to the BitVMX program only when the HTLC is initialized.

® The sender also produces a Schnorr-signed commitment C (i) that includes the current sequence number i, the conditional
payment amount, and the hash y (i) where y(i) = H(x(1i)). The secret preimage x (i) will unlock the payment.

® To support multiple HTLCs, C (i) could be structured as the Merkle root of all active HTLCs.

® Assuming Alice is the sender, Bob can later reveal the preimage x (1) to settle the payment. Ideally, both parties cooperate to
update their balances accordingly. However, if Alice refuses, Bob may initiate a dispute by revealing the signed commitment
C(j), the preimage x (i), and showing that H(x (1)) = y(i).

® If Bob is dishonest and j < i, Alice can respond with Bob’s previously signed revocation message Mb (1), invalidating Bob’s

claim and earning the channel funds as compensation. If she cannot provide such a revocation, Bob wins the dispute and
claims the HTLC-locked funds. Crucially, the rest of the channel balance is unaffected by disputes over individual HTLCs.

a Fairgate @ BitVMX

Advancing to the Next State (Alice pays Bob)

1. Alice and Bob sign PayTx(t) and AssertTx (i), exchanging signatures.

2. Bobsigns StartTx(t) and sends it to Alice. Now Alice can continue with either state, but Bob
can only use the old state. Since he received funds, Bob is motivated to proceed.

3. Alice gives Bob a revocation message Ma (i), which is a Schnorr signature on i, representing:
“I, Alice, revoke all states prior to 1.” Now Alice can only use the new state.

4. Alice co-signs StartTx(t) and sends it to Bob. Alice can only use the new state; Bob could
use either, but the new state benefits him more.

5. Bob forwards Alice’s revocation to his watchtower and issues his own revocation message
Mb (1) to Alice. At this point, neither party can safely use the old state.

a Fairgate @ BitVMX

Liveness Guarantees During State Transitions

1. Toprevent aparty from stalling the protocol mid-update, the channel includes a
timeout mechanism. If Alice issues StartTx(j) but delays or refuses to issue the
corresponding AssertTx(j) in a timely manner, Bob can respond by publishing
TimerForAliceTx. This transaction initiates a countdown, giving Alice a limited
window to publish AssertTx(j). If Alice fails to do so before the timer expires, Bob
may publish TimeoutForAliceTx, which awards him all funds in the channel as a
penalty for Alice’s non-cooperation.

2. Thetimeristriggered using the preimage Pa, which Alice reveals when she
publishes StartTx(j). This ensures that only Alice can start this process, and only
Bob can enforce the timeout based on her actions.

a Fairgate @ BitVMX

Watchtower Efficiency

a Fairgate

Penalty-based LN channels (Poon-Dryja) need “bulky” watchtowers: each time a channel state updates,
the client sends the watchtower a fresh hint + encrypted-blob for that specific old state. Towers must keep

one blob per prior state until the channel closes (storage grows linearly with the number of updates).

Eltoo-style channels (requires ANYPREVOUT/NOINPUT) make towers O(1): a tower only needs data for

the latest state, because newer states cleanly supersede older ones.

Outpost / Khabbazian et al. Tower decrypts justice transaction from unilateral exit transactions.
Requires OP_RETURN payload > 80 bytes.

) BitvMX

Proofs and Counter-Proofs

a Fairga

Timeout: Alice wins

Proof:
Alice Circuit Input
(with Alice's Sequence Number
& Signature)

Challenge Proof Validity with
secret
Bob wins

Counter-Proof:
Bob Circuit Input
(Alice & Bob's Sequence
Numbers and Bob's signature)

Challenge Counter-Proof
Validity with secret.
Alice wins

Timeout: Bob wins

) BitvMX

