< 5 . e ® s o' e . .
el . . ° o ° SNt .

. 5 . Jansssea,,
.

eo0 0000,
) .

Martin Jonas | BitVMX Principal Engineer SEPT 2025

a Fairgate

Preguntas claves sobre la CPU de BitVMX

) BitvMX

¢Para que necesito un programa?

a-a #
5@

Bitcoin permite transferencias BitVMX permite definir un
entre usuarios programa para controlar el
7 Fairgate destino de los fondos

(30) BitVMX

¢Por que no escribirlo en Bitcoin Script?

a Fairgate

Se limitd por razones de seguridad

Permite realizar algunas cosas simples:
o HashLocks

o Threshold signatures

Permite hacer algunas cosas mas complejas,

pero muy caras (mul 5k)

4 }

0 ¥-=]
\\\—L,/

BITCOIN

SCRIPT

N

?

/

d

&)
> 28

) BitvMX

¢Como se escribe un programa?

e LaCPUdeBitVMXusauna arquitectura RISC-V, que es:
o Unaarquitectura abierta (como si fuera AMD o Intel)
o Modular, permite construir un set inicial de instrucciones y luego
extenderlo (ejemplo: primero enteros, luego multiplicacion “M”).

o Compatible con varios lenguajes: Rust, C, C++, Zig, entre otros.

e Estofacilitael desarrollo de programasy la capacidad de

debuggear.

a Fairgate

) BitvMX

cQue tipo de programas podes escribir?

e Programas que reciban un input y que devuelvan true/false
e Deterministicos, siempre producen el mismo resultado
e Sinacceso al file system ni a otro componentes externos (algunos podrian simularse)

e Sin efectos colaterales: no interactian con el mundo externo mientras corren

S

INPUT

a Fairgate

) BitvMX

;Como acordamos que programa ejecutar?

e Partimos del mismo source code, que cada parte puede auditar.
e Cadauno compila por su cuenta (con la misma toolchain).
e Luego creamos un grafo de transacciones firmado por ambos,

donde queda plasmado qué programa estamos ejecutando.
Source
e ;Dénde se guarda esto? Code

o Enun Taproot/Taptree: tipo de transaccién en Bitcoin que permite
hacer una Merkle proof (probar que una hoja pertenece a un arbol

sin mostrar todo el arbol).

o Las hojas contienen instrucciones RISC-V (escritas en Bitcoin

Script)

a Fairgate

) BitvMX

¢Ejecucion off-chain y verificacion on-chain?

e Elprogramacompleto se ejecuta en nuestras maquinas, no en Bitcoin.

e ;Porqué?

O

e Flujo:
O
O

O

a Fairgate

Porque un programa puede tener millones de instrucciones, lo cual seria imposible
llevarlo a Bitcoin n &

— CHALLENGE

o IF DISPUTE
Se ejecuta off-chain (cada parte por su lado). — ;
Solo si no hay acuerdo, se resuelve on-chain.
Partimos de un estado inicial, cada instruccion modifica el 500M 1
estado de la CPU en un paso. INSTRUCTIONS 'NggRé’:‘;',\?N
OFF-CHAIN 3

Se busca el primer paso en que no estamos de acuerdo.

Eso es lo que se challengea en Bitcoin: una sola instruccion.

Esto reduce el costo de ejecutar 500 millones de instrucciones a 1 instruccion, +
una busqueda binaria para ubicar dénde divergen las ejecuciones.

) BitvMX

¢Como se le pasa un input a un programa?

a Fairgate

Una parte pone el input en una transaccion de Bitcoin y la firma.

La otra parte observa la transaccion, toma el input y lo ejecuta off-chain en la CPU.
Sila discrepancia esta en la memoria donde esta el input, la contraparte puede
mostrar que se firmaron dos cosas distintas y asi ganar.

Bitcoin Script no permite leer datos de transacciones anteriores, entonces el input se
codifica usando OTS (One-Time Signatures).

Esto permite referenciar valores de otras transacciones, aunque tiene un costo alto.

@O

) BitvMX

¢Que pasa si el input es muy grande?

e ;Cémo lo solucionamos? Usando Zero Knowledge Proofs (ZKP).
e Las ZKP permiten que una parte pruebe ala otra que tiene el input correcto
sin revelar el input

e Sirve para:
o Verificar que alguien tiene informacion sin revelar (preimagen de un hash)
o Probar algo costoso de demostrar, pero barato de verificar (una tx no existe en la

blockchain)

e Reduce losinputs a 300 bytes. 300

bytes

INPUT
a Fairgate BAIA ZKP ® BitVMX

¢Como lo aplicamos?

e Usamos RiscZero, una tecnologia ZKP que también usa RISC-V (aunque no tiene
relacion directa con el RISC-V de BitVMX).

e Sepuede escribir en Rust un programa verificador

e Luego escribimos otro programa, ahora si para nuestra CPU, que verifica que la

RISC
ZERO

prueba anterior es correcta

BitVMX

a Fairgate

) BitvMX

Arquitectura de BitVMX

a Fairgate

m T T) ™ T = = T) o T
=] =] =} .u q p q =] q
p p: =] . U d p < d
p Key g P storage P Operator § p BitvMX ¢
manager backend Comms Operators
o dq o) o o
r) T = o = =) T = o T
=N
=] b l q =] q =] q =] @ q
p] >0 < P 7 (=23 0 [=|
P Protocol § sitvmx o P Bitcoin 9§ P Bitcoin §
Builder Client Coordinator Node
o d o b o d b o
y
[T T [T T r =) T) =) T
=} d B —>» d h ¥ g P B3N
sss ZKP
h > —— ce—> < ZERIN
v
P BitvMx cPU § P Message H P ZKP g P Risczero H
Broker Helper Instance
b o d o o o d
r = T
b : &JI g
o
L =S d
P Protocol 1§

Client
n

) BitvMX

¢Como construimos usando BitVMX ?

e Definir un programa verificador
o Escribir el programa que represente la l6gica a validar.

o Dependiendo del tamano: parala CPU o usando ZKP

e Construir protocolos que conectan con la disputa

Programa Protocolos Aplicacion
Verificador de Disputa sobre BitVMX

o Como se manejan multiples disputas entre varias partes

. , . Sl —
o Légicaespecificade la aplicacién > — |=O
T

e Usarla APl de BitVMXy conectarlo con tu aplicacion

o Integrar el verificador y el protocolo en la aplicacién real
o BitVMX provee una API para interactuar con la CPU, manejar inputs y coordinar la disputa,

generar pruebas

a Fairgate ® BitVMX

Gracias!

) () BitvMX

https://github.com/FairgatelLabs https://bitvmx.org

