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Preguntas claves sobre la CPU de BitVMX
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¢Para que necesito un programa?
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Bitcoin permite transferencias BitVMX permite definir un
entre usuarios programa para controlar el
7 Fairgate destino de los fondos
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¢Por que no escribirlo en Bitcoin Script?

a Fairgate

Se limitd por razones de seguridad

Permite realizar algunas cosas simples:
o  HashLocks

o  Threshold signatures

Permite hacer algunas cosas mas complejas,

pero muy caras (mul 5k)
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¢Como se escribe un programa?

e LaCPUdeBitVMXusauna arquitectura RISC-V, que es:
o Unaarquitectura abierta (como si fuera AMD o Intel)
o  Modular, permite construir un set inicial de instrucciones y luego
extenderlo (ejemplo: primero enteros, luego multiplicacion “M”).

o  Compatible con varios lenguajes: Rust, C, C++, Zig, entre otros.

e Estofacilitael desarrollo de programasy la capacidad de

debuggear.
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cQue tipo de programas podes escribir?

e Programas que reciban un input y que devuelvan true/false
e Deterministicos, siempre producen el mismo resultado
e Sinacceso al file system ni a otro componentes externos (algunos podrian simularse)

e Sin efectos colaterales: no interactian con el mundo externo mientras corren
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;Como acordamos que programa ejecutar?

e Partimos del mismo source code, que cada parte puede auditar.
e Cadauno compila por su cuenta (con la misma toolchain).
e Luego creamos un grafo de transacciones firmado por ambos,

donde queda plasmado qué programa estamos ejecutando.
Source
e ;Dénde se guarda esto? Code

o  Enun Taproot/Taptree: tipo de transaccién en Bitcoin que permite
hacer una Merkle proof (probar que una hoja pertenece a un arbol

sin mostrar todo el arbol).

o Las hojas contienen instrucciones RISC-V ( escritas en Bitcoin

Script)
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¢Ejecucion off-chain y verificacion on-chain?

e Elprogramacompleto se ejecuta en nuestras maquinas, no en Bitcoin.

e ;Porqué?

O

e Flujo:
O
O

O

a Fairgate

Porque un programa puede tener millones de instrucciones, lo cual seria imposible
llevarlo a Bitcoin n &

— CHALLENGE

o IF DISPUTE
Se ejecuta off-chain (cada parte por su lado). — ;
Solo si no hay acuerdo, se resuelve on-chain.
Partimos de un estado inicial, cada instruccion modifica el 500M 1
estado de la CPU en un paso. INSTRUCTIONS 'NggRé’:‘;',\?N
OFF-CHAIN 3

Se busca el primer paso en que no estamos de acuerdo.

Eso es lo que se challengea en Bitcoin: una sola instruccion.

Esto reduce el costo de ejecutar 500 millones de instrucciones a 1 instruccion, +
una busqueda binaria para ubicar dénde divergen las ejecuciones.
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¢Como se le pasa un input a un programa?

a Fairgate

Una parte pone el input en una transaccion de Bitcoin y la firma.

La otra parte observa la transaccion, toma el input y lo ejecuta off-chain en la CPU.
Sila discrepancia esta en la memoria donde esta el input, la contraparte puede
mostrar que se firmaron dos cosas distintas y asi ganar.

Bitcoin Script no permite leer datos de transacciones anteriores, entonces el input se
codifica usando OTS (One-Time Signatures).

Esto permite referenciar valores de otras transacciones, aunque tiene un costo alto.
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¢Que pasa si el input es muy grande?

e ;Cémo lo solucionamos? Usando Zero Knowledge Proofs (ZKP).
e Las ZKP permiten que una parte pruebe ala otra que tiene el input correcto
sin revelar el input

e Sirve para:
o  Verificar que alguien tiene informacion sin revelar (preimagen de un hash)
o  Probar algo costoso de demostrar, pero barato de verificar (una tx no existe en la

blockchain)

e Reduce losinputs a 300 bytes. 300

bytes

INPUT
a Fairgate BAIA ZKP ® BitVMX



¢Como lo aplicamos?

e Usamos RiscZero, una tecnologia ZKP que también usa RISC-V (aunque no tiene
relacion directa con el RISC-V de BitVMX).

e Sepuede escribir en Rust un programa verificador

e Luego escribimos otro programa, ahora si para nuestra CPU, que verifica que la

RISC
ZERO

prueba anterior es correcta

BitVMX

a Fairgate
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Arquitectura de BitVMX

a Fairgate
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¢Como construimos usando BitVMX ?

e Definir un programa verificador
o  Escribir el programa que represente la l6gica a validar.

o Dependiendo del tamano: parala CPU o usando ZKP

e Construir protocolos que conectan con la disputa

Programa Protocolos Aplicacion
Verificador de Disputa sobre BitVMX

o  Como se manejan multiples disputas entre varias partes

. , . Sl —
o Légicaespecificade la aplicacién > — |=O
T

e Usarla APl de BitVMXy conectarlo con tu aplicacion

o Integrar el verificador y el protocolo en la aplicacién real
o BitVMX provee una API para interactuar con la CPU, manejar inputs y coordinar la disputa,

generar pruebas

a Fairgate ® BitVMX



Gracias!
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https://github.com/FairgatelLabs https://bitvmx.org



