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BitVMX: A CPU for Universal 
Computation on Bitcoin

* Created by Robin Linus in 2023.

BitVMX is a cutting-edge framework designed to optimistically 
execute arbitrary programs on Bitcoin, leveraging the N-party 
disputable computation paradigm introduced by BitVM(*).
  

With its foundation in secure, extensible, and open-source 
principles, BitVMX paves the way for running any CPU on Bitcoin.



Problem

BitVM and BitVMX inputs must be signed with the Winternitz 
scheme. The existing implementation expands each signed byte to 
200 vbytes. 

This makes BitVM protocols very expensive when verifying other 
computation integrity proofs such as STARKs or Nova.



Solution

Use standard Bitcoin transaction to store the data, as transactions 
are already signed by Schnorr or ECDSA signatures. 
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Abstract Bitcoin Predicate Verification Machine 3
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OT-Signing the Input vs a hash of the Input
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The Basic DAG

While conceptually simple, is very tricky to get all the details right!



Terminology Used for Transactions

PA
C

Type of transaction:
P = Penalization
K = Kick-off
D = Data
C = Commitment
R = Reveal

Who published the 
transaction:
A = Alice
B = Bob

What other transaction 
this is responding to:
D = Data
C = Commitment
R = Reveal



Terminology Used for One-Time Signatures

OA

W

This is a OT signature
Who performed the 
signature:
A = Alice
B = Bob

What data is being 
signed



Simple Scheme to Force Publication of Data in Bitcoin



Storing Signed Data in a Bitcoin Transaction

● OP_RETURN. Data stored in an output containing an OP_RETURN opcode 
in its scriptPub.

● Enveloping. Data pushed into the stack in a ScriptPub and surrounded by a 
skipping conditional (OP_PUSH 0 / OP_IF / OP_ENDIF).

● Annex. Data in Segwit annex.
● P2WSH Address. Data stored in multiple standard outputs as  (un-owned) 

addresses. 
● ScriptPub with P2PK. Data can be stored directly in P2PK outputs as 

64-byte public keys.
● ScriptPub with bare multisigs. Data encoded in up to 3 public keys.

Data in output

Data in output
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Storing Signed Data in a Bitcoin Transaction

● OP_RETURN. Data stored in an output containing an OP_RETURN opcode 
in its scriptPub.

● Enveloping. Data pushed into the stack in a ScriptPub and surrounded by a 
skipping conditional (OP_PUSH 0 / OP_IF / OP_ENDIF).

● Annex. Data in Segwit annex.
● P2WSH Address. Data stored in multiple standard outputs as  (un-owned) 

addresses. 
● ScriptPub with P2PK. Data can be stored directly in P2PK outputs as 

64-byte public keys.
● ScriptPub with bare multisigs. Data encoded in up to 3 public keys.

Standard and 4x lower cost

PR #32406: uncap datacarrier by default



Enveloping with Timeouts - An impossible feat?



Proving Data Availability to BitVMX

● Inclusion-Proof DA
● Timelock-based DA



Inclusion-Proof DA

● A fist BitVMX instance proves input data availability by verifying an SPV 
proof.

○ SNARK signed by Winternitz OTS consumes approximately 60K vbytes.

● The second BitVMX instance receives as input a hash of the data proved to 
be available in the first instance. 

○ 32 bytes with the Winternitz OTS consumes 6.4K vbytes. 



Timelock-based DA

● P2SH-based (high cost or non-standard, lower complexity)
● Enveloping-based (standard and low cost, higher complexity)



Problems Still Unsolved (up to this point)

● How can the RISC-V can load the user input  into memory, compare with the 
input hash and how can the challenger dispute it

● How to obtain a hash of the User Input, if Bitcoin doesn’t sign the 
OP_RETURN data, but the whole transaction.



Building the real 
Transaction DAG

* Created by Robin Linus in 2023.



Definitions

● The User Input (UI) as the input the user program will need to consume to 
decide the outcome of the BitVMX protocol (accept or reject the spending). 

● The Program Input (PI) will be a message that can be accessed by the 
BitVMX CPU and contains the UI, but may also contain additional padding, 
header or footer that should be skipped by the user program.



Definitions

A first kick-off transaction KA contains a 
predefined P2SH output called “handle” that 
contains two spending paths (using 
OP_IF/OP_ELSE/OP_ENDIF). 

● The first is consumed by a transaction DA 
which provides the User Input (UI Data). 

● The second output of K is consumed by a 
penalization transaction PB

D, has a relative 
timelock and requires an emulated 
covenant



Full DAG



The transactions KA, PB
C, PB

D, 
KB

1 and KB
2 are pre-signed by 

both participants emulating 
covenants. 



Two instances of BitVMX 
(primary and secondary).

Secondary instance is used by 
Bob to prove Alice frauds in 
building her transactions. This 
is the Consistency Check. 



A first kick-off transaction KA 
contains a predefined P2SH 
output called “handle” that 
contains two spending paths 
(using 
OP_IF/OP_ELSE/OP_ENDIF). 

The first path: transaction DA 
which provides the User Input 
(UI Data). 

The second path: a 
penalization transaction PB

D, 
with a relative timelock.

OP_RETURN 
<long data>



The commit V output is used by 
Alice to commit to the value V (a 
hash of the PI). 
It can be spent by one of two 
transactions

The first path: used  by a 
transaction CA to publish V and 
OA

V. 

The second path: used by a 
penalization transaction PB

C, 
with a relative timelock.



Variant DA
 could spend both the 

handle and commit V outputs.

Downsides: 

● PI becomes longer (but 
worst case is always 1 MB)



Definitions

● The User Input (UI) as the input the user program will need to consume to 
decide the outcome of the BitVMX protocol (accept or reject the spending). 

● The Program Input (PI) will be a message that can be accessed by the 
BitVMX CPU and contains the UI, but may also contain additional padding, 
header or footer that should be skipped by the user program.



32-Bit BitVMX CPU - Memory-Mapped Program Input

● Program must parse D’  and skip inputs.



How Alice computes V

Goal: Check S against V without showing the UI to the secondary BitVMX instance



The Consistency Check (Secondary BitVMX instance) 



How Program Inputs are structured ?

Address type of the 
handle

UI stored in.. Program Input Type

P2TR Script Tapleaf tagged message

P2TR Tx output a CTxOut structure (referenced by sha_single_output) 

P2WSH WitnessScript a ScriptPub

P2WSH Tx output a CTxOut structure
(referenced by hashOutputs)

P2SH ScriptSig Impossible because the scriptSig is not signed

P2SH Tx output a modified transaction



Is there other way to avoid showing the User Input to the 
secondary BitVMX instance ?

● Yes, make that 2nd instance validate a SNARK that proves D is hashed to a 
RAM Merkle Root V, making D a hidden witness.

● Use a BitVM1 verifier that uses Merklelized RAM for each step.
● But: we need to OT-sign 300 bytes and …. we add a lot of complexity.



Merkelizing RAM: Alice’s work



Merkelizing RAM: Bob’s SNARK-based fraud proof 



Merkelizing RAM: Secondary BitVMX Instance check



The ICM CPU Mode

Can we use the (unsigned) Input 
Data from the RISC-V CPU ?



The ICM CPU Mode: New Memory Areas

● UPI (Unsigned Program Input): Holds the unsigned program input and this data 
is RAM memory-mapped

● SPI (Signed Program Input). This is a normal OT signed program input (by 
Alice). When using UPI, this area will be used to store a single hash digest. It’s 
also RAM memory-mapped.

● MEB (State Buffer). This is a small 64-byte buffer that is used to store the 
message input to the SHA-256 function.

● MIB (Midstate Buffer). This 32-byte buffer stores the midstate or final state of 
the SHA-256 function.



The ICM CPU Mode: New Opcodes

● HASH_UPDATE (non-last f’s)
● HASH_FINAL (last f)

MIB

MEB

MIB

One-way compression function 
(OWCF)



The ICM CPU Mode: New RISC-V Opcode

● lssw imm(rs1)
● Load Store-Store Word
● Loads word from memory and stores it in two places simultaneously:

○ Same location where it was read (read1.address !!!)
○ In the MEB at address:

( read1.address - UPI_base_Offset ) % 64 + MEB_base_offset



The ICM CPU Mode: LSSW Trace

● read1.addressi == imm(rs1) 

● write.addressi == read1.addressi

● read1.valuei == word stored in UPI at offset imm(rs1)

● write.valuei  == read1.valuei

When challenging a read/write operation, the lssw instruction will be also valid as 
if the following write trace had been produced:

● write.addressi == ( read1.addressi - UPI_base_Offset ) % 64 + 

MEB_base_offset



Fun Facts

● Writing a word to two locations related by a known delta is as challengeable as writing it to 
a single location.

● An instruction BLKSTORE imm(rs1) <- rs2 that fills 1 Megabyte of RAM with a certain 
word value can be challenged as easy as a single word write.

● Can a program be made more efficient using BLKSTORE ?



The ICM CPU Mode: Program Sections

● Section A: 
○ Run in ICM mode. 
○ Program reads the UPI, move the bytes to the MEB, perform hashing 

operations using HASH_UPDATE, finalize with HASH_FINAL and leave the 
final result in the MIB.

○ Uses LSSW to move words from UPI to MEB.
● Section B:

○ Normal program operation. Program must parse D’ to extract UI.



The ICM CPU Mode: Section A Code

int bmax = maxPI / 64; // Assumes maxPI % 64 == 0, and maxPI is OT-signed by Alice

for (int b=0;i<bmax;b++) {

for(int j = 0;j<64;j++) {

MEB[i % 64],UPI[i] = UPI[i]  // use LSSW 

i++;

 }

 HASH_UPDATE  < — CHALLENGABLE

}

padding(); 

HASH_FINAL    < — CHALLENGABLE



Additional Research Done

● Can we use an interactive version of Schnorr-signed messages where Alice and Bob 
exchange signed messages before the BitVMX protocol starts? 
YES, but there is no evident use case.

● Can we use Schnorr signatures to publish and sign the midstates within BitVMX  ? 
Yes, but the benefit is not significant

● How does this protocol extend to multiple parties ?
Yes!



Summary

● We have presented a new method to sign BitVMX program inputs with ECDSA or 
Schnorr signatures, instead of using an OTS scheme. 

● We achieved a 1:1 data expansion factor (vs 1:200 for Winternitz )
● Now we can verify uncompressed SPV proofs, STARKs, NOVA, bulletproofs.
● To protect from malformed or fraudulent data publications we use a secondary BitVMX. 
● We use the Winternitz signature of the sequential hash inside the BitVMX CPU. 
● We add a SHA-256 hasher to the BitVMX CPU to hash the program input 
● Our most advanced scheme based on enveloping uses standard Bitcoin transactions 

and has minimal overhead



BitVMX summary

The execution trace is defined as:

tracei = write.addressi || write.valuei || writePC.pci

The full trace is defined as:

full tracei = read1.addressi || read1.valuei || 
read1.lastStepi ||...|| writePC.pci

The step hash is defined is:

stepHashi = h(stepHashi−1 ||tracei)



The ICM CPU Mode: New Trace

tracei = write.addressi || write.valuei || writePC.pci 
|| MIBi || opcodei

● Trace size: 49 bytes



The ICM CPU Mode: New Search Process

AB

n-ary search here

step hash chain



The ICM CPU Mode: New Search Process
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Search 
Process

AB

r

LSSW <a>

HASH_UPDATE

HASH_UPDATEs

(MEBx, MIBx)

x

MIBr-1

MEBx MIBx Challenge..

Correct Correct LSSR write

Correct Incorrect not possible

Incorrect Correct not possible

Incorrect Incorrect (no 
past or future 
MIB)

Binary search 
(r-1)<q<AB
OWCF: q-1 -> q

MIB = V (Correct)

q-1 q

binary search here

(1) If OWCF(MIBr-1, MEBx,MIBx) is 
incorrect challenge!

(2) Use the table on the right:

faulty ins.



The ICM CPU Mode: 
New Search Process



Using Enveloping for the Timelock-based DA Scheme



Using Enveloping for the Timelock-based DA Scheme



Program Input in Enveloping: TapLeaf



Program Input in Enveloping



The DA-DAG



Transactions without covenants



Transactions without covenants

Challenges

1. Invalid Transaction CA

2. Invalid Program Input 
Hash Commitment V

3. Invalid Signature W
4. Invalid Transaction RA



Signatures of Future Transactions

How can we be sure that 
Alice’s signature W of 
transaction PA

C is correct ?



Challenge 1: Invalid Transaction CA 

Challenges 1: Invalid 
Transaction CA

Bob wants to prove that transaction 
CA is correctly signed by S1 or S2, 
but it is malformed (invalid address 
X, additional unexpected inputs or 
outputs). 



Field Size Description

hash_type 1 A byte indicating the which inputs/outputs are being signed

nVersion 4 The transaction version field.

nLockTime 4 The transaction locktime field.

sha_prevouts 32 The SHA-256 hash of the txid+vout outpoints for all the inputs included in 
the transaction. ~SIGHASH_ANYONECANPAY

sha_amounts 32 The SHA-256 hash of all the output amount fields for all the inputs 
included in the transaction. ~SIGHASH_ANYONECANPAY

sha_scriptpubkeys 32 The SHA-256 hash all the output scriptpubkeys for all the inputs included 
in the transaction. ~SIGHASH_ANYONECANPAY

sha_sequences 32 The SHA-256 hash of all the sequence fields for all the inputs included in 
the transaction.

sha_outputs 32 The SHA-256 hash of all the outputs in the transaction.
~(SIGHASH_NONE or SIGHASH_SINGLE)

spend_type 1 A single byte that encodes the extension flag and annex present values.

outpoint (input) 36 The txid+vout outpoint of the input being signed for. 
SIGHASH_ANYONECANPAY

amount (input) 8 The amount field of the input being signed for. SIGHASH_ANYONECANPAY

scriptPubKey (input) vari
able

The scriptpubkey of the input being signed for. SIGHASH_ANYONECANPAY

nSequence (input) 4 The sequence field of the input being signed for. 
SIGHASH_ANYONECANPAY

input_index 4 The vin of the input being signed for. ~SIGHASH_ANYONECANPAY

Field Size Description

Sha_annex 32 The SHA-256 of the optional annex included at the 
end of the witness field.

Sha_single_output 32 The SHA-256 of the output opposite the input 
currently being signed for.
SIGHASH_SINGLE

tapleaf_hash 32 The leaf hash for the chosen script you're using 
from the script tree.
Script path spend extension (tapscript)

key_version 1 The type of public key used in the leaf script. 
Script path spend extension (tapscript)

codesep_pos 4 The opcode position of the last 
OP_CODESEPARATOR in the leaf script.
Script path spend extension (tapscript)

What Taproot signs



Field Size Description

hash_type 1 A byte indicating the which inputs/outputs are being signed

nVersion 4 The transaction version field.

nLockTime 4 The transaction locktime field.

sha_prevouts 32 The SHA-256 hash of the txid+vout outpoints for all the inputs included in 
the transaction. ~SIGHASH_ANYONECANPAY

sha_amounts 32 The SHA-256 hash of all the output amount fields for all the inputs 
included in the transaction. ~SIGHASH_ANYONECANPAY

sha_scriptpubkeys 32 The SHA-256 hash all the output scriptpubkeys for all the inputs included 
in the transaction. ~SIGHASH_ANYONECANPAY

sha_sequences 32 The SHA-256 hash of all the sequence fields for all the inputs included in 
the transaction.

sha_outputs 32 The SHA-256 hash of all the outputs in the transaction.
~(SIGHASH_NONE or SIGHASH_SINGLE)

spend_type 1 A single byte that encodes the extension flag and annex present values.

outpoint (input) 36 The txid+vout outpoint of the input being signed for. 
SIGHASH_ANYONECANPAY

amount (input) 8 The amount field of the input being signed for. SIGHASH_ANYONECANPAY

scriptPubKey (input) vari
able

The scriptpubkey of the input being signed for. SIGHASH_ANYONECANPAY

nSequence (input) 4 The sequence field of the input being signed for. 
SIGHASH_ANYONECANPAY

input_index 4 The vin of the input being signed for. ~SIGHASH_ANYONECANPAY

Field Size Description

Sha_annex 32 The SHA-256 of the optional annex included at the 
end of the witness field.

Sha_single_output 32 The SHA-256 of the output opposite the input 
currently being signed for.
SIGHASH_SINGLE

tapleaf_hash 32 The leaf hash for the chosen script you're using 
from the script tree.
Script path spend extension (tapscript)

key_version 1 The type of public key used in the leaf script. 
Script path spend extension (tapscript)

codesep_pos 4 The opcode position of the last 
OP_CODESEPARATOR in the leaf script.
Script path spend extension (tapscript)

Detecting Additional 
Inputs (method 3)



Field Size Description

hash_type 1 A byte indicating the which inputs/outputs are being signed

nVersion 4 The transaction version field.

nLockTime 4 The transaction locktime field.

sha_prevouts 32 The SHA-256 hash of the txid+vout outpoints for all the inputs included in 
the transaction. ~SIGHASH_ANYONECANPAY

sha_amounts 32 The SHA-256 hash of all the output amount fields for all the inputs 
included in the transaction. ~SIGHASH_ANYONECANPAY

sha_scriptpubkeys 32 The SHA-256 hash all the output scriptpubkeys for all the inputs included 
in the transaction. ~SIGHASH_ANYONECANPAY

sha_sequences 32 The SHA-256 hash of all the sequence fields for all the inputs included in 
the transaction.

sha_outputs 32 The SHA-256 hash of all the outputs in the transaction.
~(SIGHASH_NONE or SIGHASH_SINGLE )

spend_type 1 A single byte that encodes the extension flag and annex present values.

outpoint (input) 36 The txid+vout outpoint of the input being signed for. 
SIGHASH_ANYONECANPAY

amount (input) 8 The amount field of the input being signed for. SIGHASH_ANYONECANPAY

scriptPubKey (input) vari
able

The scriptpubkey of the input being signed for. SIGHASH_ANYONECANPAY

nSequence (input) 4 The sequence field of the input being signed for. 
SIGHASH_ANYONECANPAY

input_index 4 The vin of the input being signed for. ~SIGHASH_ANYONECANPAY

Field Size Description

Sha_annex 32 The SHA-256 of the optional annex included at the 
end of the witness field.

Sha_single_output 32 The SHA-256 of the output opposite the input 
currently being signed for.
SIGHASH_SINGLE

tapleaf_hash 32 The leaf hash for the chosen script you're using 
from the script tree.
Script path spend extension (tapscript)

key_version 1 The type of public key used in the leaf script. 
Script path spend extension (tapscript)

codesep_pos 4 The opcode position of the last 
OP_CODESEPARATOR in the leaf script.
Script path spend extension (tapscript)

Detecting Additional 
Outputs



X = P + tG

Detecting an invalid output X

V

TapBranch

TapTweak

t

TapLeaf

CLV(ti)   CHECK_SIG(PKA
W)

sha_outputs

amount

(known to Bob) (Published by 
Alice)

(known to Bob)

Unspendable Internal 
Key (NUMS)



Challenge 2: Invalid Program Input Hash V

Challenge 2: Invalid Program 
Input Hash Commitment V

Bob wants to prove that the 
program input hash V signed with 
OA

V does not match the data signed 
with Schnorr in signature S1.



Challenge 3: Invalid Signature W

Challenge 3: Invalid 
Signature W

Bob wants to prove that the value 
W given in CA does not correspond 
to a valid signature for transaction 
PB

R. 



Challenge 4: Invalid Transaction RA

Challenge 4: Invalid 
Transaction RA

Bob wants to prove that the 
transaction RA has no additional 
inputs or outputs. Otherwise, Bob 
may want to prove that Alice 
performed a I/O grinding attack.



Future Research

● Can we use an interactive version of Schnorr-signed messages where Alice and Bob 
exchange signed messages before the BitVMX protocol starts?

● Can we use Schnorr signatures to publish and sign the midstates within BitVMX  ?
● How does this protocol extend to multiple parties ?



Summary

● We have presented a new method to sign BitVMX program inputs with ECDSA or 
Schnorr signatures, instead of using an OTS scheme. 

● We achieved a 1:1 data expansion factor (vs 1:200 for Winternitz )
● Now we can verify uncompressed SPV proofs, STARKs, NOVA, bulletprofs.
● To protect from malformed or fraudulent data publications we use a secondary BitVMX. 
● We use the Winternitz signature of the sequential hash inside the BitVMX CPU. 
● We add a SHA-256 hasher to the BitVMX CPU to hash the program input 
● Our most advanced scheme based on enveloping uses standard Bitcoin transactions 

and has minimal overhead



ESSPI: ECDSA/Schnorr 
Signed Program Input for 

BitVMX
Sergio Demian Lerner, Martin Jonas, and Ariel Futoransky

“To deeply understand most things, it takes more than one hour of a remote meeting” - Old proverb


