< 5 . e ® s o' e . .
el . . ° o ° SNt .

)
oo * e,

. . . P
.®

eo0 0000,
) .

Sergio Demian Lerner | CTO, Fairgate Labs

BitVMX: A CPU for Universal
Computation on Bitcoiln

BitVMX is a cutting-edge framework designed to optimistically
execute arbitrary programs on Bitcoin, leveraging the N-party
disputable computation paradigm introduced by BitVM(*).

With its foundation in secure, extensible, and open-source
principles, BitVMX paves the way for running any CPU on Bitcoin.

* Created by Robin Linus in 2023.

a Fairgate

Problem

BitVM and BitVMX inputs must be signed with the Winternitz
scheme. The existing implementation expands each signed byte to
200 vbytes.

This makes BitVM protocols very expensive when verifying other
computation integrity proofs such as STARKs or Nova.

a Fairgate

Solution

Use standard Bitcoin transaction to store the data, as transactions
are already signed by Schnorr or ECDSA signatures.

a Fairgate

Abstract Bitcoin Predicate Verification Machine

Signature
Of Input

|

Signature

verification

Predicate
verification

— boolean output

T)

a Fairgate

Abstract Bitcoin Predicate Verification Machine

OT-Signature
Signature
Of Input
J Witness
Signature Predicate
verification verification boolean output
Bitcoin script RISC-V Program
Assumed in the processor’s
Input memory but disputable
Witness

a Fairgate

Abstract Bitcoin Predicate Verification Machine 2

Publication

Bitcoin Tx

Authenticated
User Input

—

Check Data
Availability

Schnorr
Signing

{ User Input

Hash

Consistency
Check
If published
signature is valid,
and predicate
input signature is
valid then
Hash(Pub) =
predicate Input

4{ Predicate Input J

Tx Timelocks

Signature 1

Of Predicate Input

OT-Signature

Signature
verification

Bitcoin script

D Proving
| | Verification

Predicate

Witness

verification

boolean
——— output

RISC-V Program

Disputable

a Fairgate

Abstract Bitcoin Predicate Verification Machine 3

Check Data Availability

Publication

Bitcoin Tx

AuthenticateUs
er Input

Extract Signature —‘

Y

1 Disputable
C.V. Input }—
&

A

Signature verification

Schnorr
Signing

[

Sig. of C.V. Input

{ User Input 1

Hash

Witness

D Proving
| | Verification

Consistency
Verification

RISC-V Program

User Input to be

_[

Sig. of P. Input

Signature verification

T

(

Digest Witness

\

P. Input

]7

*disputed
Predicate boolean
verification output

RISC-V Program

Disputable

a Fairgate

OT-Signing the Input vs a hash of the Input

| User/Program Input |

(a)

Nibble encoding of Program Input | | Winternitz Public key
Winternitz
Sign
Large Witness |
g o T y &"""""""7
1 1
: | Nibble encoding of Program Input | | Winternitz Signature | :
1 1
e e e e e EE e EE e, e, e e —— e —— - ——— [}
(b) | User Input | —>| Enc. of Digest | | Winternitz PK |
4
Winternitz
SHA-256 Sign
l Short
Witness
Program Input | :— ------ L et A 3
1
| i | Enc. of Digest Winternitz Sig. | !
1
1 1

a Fairgate

The Basic DAG

While conceptually simple, is very tricky to get all the details right!

a Fairgate

Terminology Used for Transactions oublished the

transaction:
Type of transaction: A= Alice
P = Penalization B =Bob
K = Kick-off
D = Data \
C = Commitment A
R = Reveal
C What other transaction
this is responding to:
D = Data
C = Commitment
R = Reveal

a Fairgate

Terminology Used for One-Time Signatures

Who performed the
This is a OT signature signature:

A = Alice
B = Bob

Simple Scheme to Force

Transaction KA

Kick-off

Inputs | Outputs

Transaction DA

Data

Inputs

Outputs

Publication of Data in Bitcoin

Data

Transaction E®

Continuation

Inputs | Outputs

timelock

Transaction PBD

Punishment

Cov

Inputs

Outputs

Cov

Cov

a Fairgate

Storing Signed Data in a Bitcoin Transaction

e OP_RETURN. Data stored in an output containing an OP_RETURN opcode

in its scriptPub. | Data in output

e Enveloping. Data pushed into the stack in a ScriptPub and surrounded by a

skipping conditional (OP_PUSH 0/ OP_IF / OP_ENDIF).
e Annex. Data in Segwit annex.

e P2WSH Address. Data stored in multiple standard outputs as (un-owned)

addresses. | Data in output

e ScriptPub with P2PK. Data can be stored directly in P2PK outputs as

64-byte public keys.| Data in output
e ScriptPub with bare multisigs. Data encoded in up to 3 public keys.

Data in output

a Fairgate

Storing Signed Data in a Bitcoin Transaction

PR #32406: uncap datacarrier by default

e OP_RETURN. Data stored in an output containing an OP_RETURN opcode
in_its scriptPub.

e | Enveloping. Data pushed into the stack in a ScriptPub and surrounded by a
skipping conditional (OP_PUSH 0/ OP_IF / OP_ENDIF\.\

e | Annex.|Data in Segwit annex. standardiandi4xiowercost

e P2WSH Address. Data stored in multiple standard outputs as (un-owned)
addresses.

e ScriptPub with P2PK. Data can be stored directly in P2PK outputs as
64-byte public keys.

e ScriptPub with bare multisigs. Data encoded in up to 3 public keys.

a Fairgate

Enveloping with Timeouts - An impossible feat?

Transaction CA Transaction RA
Commit Reveal
: A
Transaction K Inputs | Outputs Inputs | Outputs
Kick-off Commit Reveal
Hash [° Dat
Inputs | Outputs a5 2
timelock ! timelock
Transaction P | Transaction PB_?
Punishment t | Punishment
Inputs | Outputs . | Inputs | Outputs |
Cov
Cov

Proving Data Availability to BitVMX

e Inclusion-Proof DA
e Timelock-based DA

a Fairgate

Inclusion-Proof DA

e A fist BitVMX instance proves input data availability by verifying an SPV

proof.
o SNARK signed by Winternitz OTS consumes approximately 60K vbytes.

e The second BitVMX instance receives as input a hash of the data proved to

be available in the first instance.
o 32 bytes with the Winternitz OTS consumes 6.4K vbytes.

a Fairgate

Timelock-based DA

e P2SH-based (high cost or non-standard, lower complexity)
e Enveloping-based (standard and low cost, higher complexity)

a Fairgate

Problems Still Unsolved (up to this point)

e How can the RISC-V can load the user input into memory, compare with the
input hash and how can the challenger dispute it

e How to obtain a hash of the User Input, if Bitcoin doesn’t sign the
OP_RETURN data, but the whole transaction.

a Fairgate

Building the real
Transaction DAG

* Created by Robin Linus in 2023.

a Fairgate

Definitions

e The User Input (Ul) as the input the user program will need to consume to
decide the outcome of the BitVMX protocol (accept or reject the spending).

e The Program Input (Pl) will be a message that can be accessed by the
BitVMX CPU and contains the Ul, but may also contain additional padding,
header or footer that should be skipped by the user program.

a Fairgate

Definitions

Transaction D
A first kick-off transaction K” contains a Data Carry
predefined P2SH output called “handle” that Transaction KA Inputs | Outputs
contains two spending paths (using General Kick-off s ul
OP IF/OP ELSE/OP ENDIF). Inputs | Outputs
P2SH . @ - z
e The first is consumed by a transaction D* (handle) Transaction P%,
which provides the User Input (Ul Data). Punishment
e The second output of K is consumed by a s || Guteuis

Cov,

penalization transaction PBD, has a relative Timelock
. . C
timelock and requires an emulated (Timeout)
covenant

a Fairgate

Full DAG

Transaction DA

Data Carry

Inputs | Outputs

: S Ul
Transaction KA
General Kick-off Transaction CA Transaction K&,
Inputs Outputs PI Hash Commit Kick-off of BitVMX User
Instance.
P2SH Inputs | Outputs
(handie) |® E B Inputs | Outputs | protocol
P2TR Coy, continues
(commit V) ' V, OA, Cov I
P2TR @ no timeoutf
(timeout)
Transaction K&,
Transaction P&,
] Kick-off of BitVMX for
Punishment Schnorr sig. validation
TL. Inputs Outputs Inputs Outputs | protocol
Cov, continues
Timelock Cov,
Cov A ~B
¢ (Timeout) | [[4®590 L
8,05,
Transaction P&
;08
Punishment
TL. Inputs Outputs
Coy,
Timelock .
o a Fairgate
(Timeout)

The transactions K*, P®_, P&,
K®, and K®, are pre-signed by
both participants emulating
covenants.

Transaction DA

Data Carry
Inputs | Outputs
A S Ul
Transaction KA
General Kick-off Transaction CA Transaction K&,
Inputs Outputs PI Hash Commit Kick-off of BitVMX User
Instance.
P2SH Inputs | Outputs
(handie) | ® E B Inputs | Outputs [} protocol
P2TR Cov, continues
(commit V) ' V, OA, f Cov | M
P2TR no timeout
(timeout) B
Transaction K&,
Transaction P&,
] Kick-off of BitVMX for
Punishment Schnorr sig. validation
TL. Inputs Outputs Inputs outputs || protocol
Cov, continues
Timelock Cov,
Cov A ~B
¢ (Timeout) H A Aa7 .
S OBS,
Transaction P&
1 0'3L
Punishment
TL. Inputs Outputs
Coy,
Timelock .
o a Fairgate
(Timeout)

Two instances of BitVMX
(primary and secondary).

Secondary instance is used by
Bob to prove Alice frauds in
building her transactions. This
is the Consistency Check.

Transaction KA

General Kick-off

Inputs

Outputs

P2SH
(handle)

P2TR
(commit V)

Transaction DA

Data Carry
Inputs | Outputs
S Ul

Transaction CA

Transaction K&,

P2TR
(timeout)

TL.

PI Hash Commit Kick-off of BitVMX User
Instance.
Inputs | Outputs Inputs Outputs
Coyv,
L o vV, oAv Cov
no timeout f
Transaction K&,
Transaction P®_
] Kick-off of BitVMX for
Punishment Schnorr sig. validation
TL. Inputs Outputs Inputs Outputs
Cov,
Timelock Cov,
Cov A OB
o — V,
(Timeout) L | 1958y
S OBS,
Transaction P&
1 0’3L
Punishment
Inputs Outputs
Coy,
Timelock
Cov
(Timeout)

protocol
continues

protocol
continues

A first kick-off transaction K*
contains a predefined P2SH
output called “handle” that
contains two spending paths
(using

OP IF/OP ELSE/OP ENDIF).

The first path: transaction D*
which provides the User Input
(Ul Data).

The second path: a
penalization transaction
with a relative timelock.

Transaction KA

General Kick-off

Inputs

Outputs

P2SH
(handle)

P2TR
(commit V)

Transaction DA

Data Carry
Inputs | Outputs
S

Transaction CA

OP RETURN
<long data>

Transaction K&,

P2TR
(timeout)

B
P>,

TL.

PI Hash Commit Kick-off of BitVMX User
Instance.
Inputs | Outputs Inputs Outputs
Cov,
L o vV, oAv Cov
no timeout f
Transaction K&,
Transaction P®_
] Kick-off of BitVMX for
Punishment Schnorr sig. validation
TL. Inputs Outputs Inputs Outputs
Cov,
Timelock Cov,
Cov A OB
o — V,
(Timeout) L | 1958y
S OBS,
Transaction P&
1 0*3L
Punishment
Inputs Outputs
Coy,
Timelock
Cov
(Timeout)

protocol
continues

R

protocol
continues

a Fairgate

The commit V output is used by
Alice to commit to the value V (a
hash of the PI).

It can be spent by one of two
transactions

The first path: used by a
transaction C* to publish V and
OA

V'

The second path: used by a
penalization transaction PBC,
with a relative timelock.

Transaction DA

Data Carry

Inputs | Outputs

Transaction K&,

Kick-off of BitVMX User
Instance.

; S Ul
Transaction KA
General Kick-off Transaction CA
Inputs Outputs Pl Hash Commit
P2SH Inputs | Outputs
(handle) |"® : P
P2TR Cov,
(commit V) 4 BV oA,
o P2IR no timeout f
(timeout) T
Transaction P®_
Punishment
TL. Inputs Outputs
Cov,
Timelock
® Cov
(Timeout) L |
Transaction P&
Punishment
TL. Inputs Outputs
Coy,
Timelock
Cov

Inputs Outputs

protocol

Cov

continues

R

Transaction K&,

Kick-off of BitVMX for
Schnorr sig. validation

Inputs Outputs

protocol

Cov,
V, OA\L OBV

508,

L, 08

continues

(Timeout)

a Fairgate

Variant D could spend both the
handle and commit V outputs.

Downsides:

e Pl becomes longer (but
worst case is always 1 MB)

Transaction KA

General Kick-off

Inputs

Outputs

P2SH
(handle)

P2TR
(commit V)

P2TR
(timeout)

Transaction DA
Data Carry
Inputs | Outputs

S
s+ ul
VO

a Fairgate

Definitions

e The User Input (Ul) as the input the user program will need to consume to
decide the outcome of the BitVMX protocol (accept or reject the spending).

e The Program Input (Pl) will be a message that can be accessed by the
BitVMX CPU and contains the Ul, but may also contain additional padding,
header or footer that should be skipped by the user program.

a Fairgate

32-Bit BitVMX CPU - Memory-Mapped Program Input

Memory Map |
Program Input |
0 2%2-1
D!
VI[IC Input oC Output
111 Hash | Index | SL | ScriptSig | Seq 1 Value | SL ScriptPub LockTime
TXID 0 - | P. Script 0 - - | R UIL | User Input 0
Script Length —
Script Length OP_RETURN

OP_PUSHDATA1

User Input Len

e Program must parse D’ and skip inputs.

a Fairgate

How Alice computes V

Transaction DA

For Pl Data
Inputs | Outputs
S Ul Data

OP_CHECKSIG
transformation

>

(SignatureHash ()
in Bitcoin Core)

Inputs

Outputs

address

Ul Data

Double SHA-256 performed by the Bitcoin
Protocol (HashWriter.GetHash () in
Bitcoin Core)

-

—>

SHA-256

N

— L —>

SHA-256

—» G

Raw ECDSA
Sign

Wint'ernitz oA
Sign

Goal: Check S against V without showing the Ul to the secondary BitVMX instance

a Fairgate

The Consistency Check (Secondary BitVMX instance)

L —» SHA-256

no

Bob wins!
Alice wins
v RISC-V
Script
OB
0",
no ol

How Program Inputs are structured ?

Address type of the
handle

UI stored in..

Program Input Type

P2TR Script Tapleaf tagged message
P2TR Tx output a CTxOut structure (referenced by sha_single_output)
P2WSH WitnessScript a ScriptPub
P2WSH Tx output a CTxOut structure
(referenced by hashOutputs)
P2SH ScriptSig Impossible because the scriptSig is not signed
P2SH Tx output a modified transaction

a Fairgate

Is there other way to avoid showing the User Input to the
secondary BitVMX instance ?

e Yes, make that 2nd instance validate a SNARK that proves D is hashed to a
RAM Merkle Root V, making D a hidden witness.

e Use a BitVM1 verifier that uses Merklelized RAM for each step.
e But: we need to OT-sign 300 bytes and we add a lot of complexity.

a Fairgate

Merkelizing RAM: Alice’s work

Transaction DA

For Pl Data
Inputs | Outputs
S Ul Data

OP_CHECKSIG
transformation

—>

(SignatureHash ()

Qin Core)
Ul Data

Inputs | Outputs

—

address | Ul Data

SHA-256

— L —>

—

root

SHA-256

e

G —»

—

Raw ECDSA
Sign

Merkelize

Winternitz
Sign

_>OA

a Fairgate

Merkelizing RAM: Bob’s SNARK-based fraud proof

(hidden witness)

Fraud: Either (1) is false or (2) is false,
but not both

S
(witness)

—» L —» SHA-256 > G

D!
Inputs | Outputs |[—» SHA-256
address | Ul Data

Merkelize

root

V (witness)

a Fairgate

Merkelizing RAM: Secondary BitVMX Instance check

Program Inputs:
SNARK

Alice wins

Bob proves fraud and wins!

a Fairgate

Can we use the (unsigned) Input
Data from the RISC-V CPU ?

The ICM CPU Mode

a Fairgate

The ICM CPU Mode: New Memory Areas

e UPI (Unsigned Program Input): Holds the unsigned program input and this data
is RAM memory-mapped

e SPI (Signed Program Input). This is a normal OT signed program input (by
Alice). When using UPI, this area will be used to store a single hash digest. It's
also RAM memory-mapped.

e MEB (State Buffer). This is a small 64-byte buffer that is used to store the
message input to the SHA-256 function.

e MIB (Midstate Buffer). This 32-byte buffer stores the midstate or final state of
the SHA-256 function.

a Fairgate

The ICM CPU Mode: New Opcodes

One-way compression function

e HASH_UPDATE (non-last f’s) (OWCF)
e HASH_FINAL (last f)

Original Message Padding/Length
w N bits \1 n bits l n bits Ll n bits
M1 M2 M3 Mt
MEB
m bits L 7 m bits
HO » f —HI—>» |—H2z—>» f |[H3» —Hty f » Ht
Compression MIB MIB Message

Function Digest i FOirgote

The ICM CPU Mode: New RISC-V Opcode

e 1ssw 1mm(rsl)

e Load Store-Store Word
e |oads word from memory and stores it in two places simultaneously:
o Same location where it was read (read1.address !!!)
o In the MEB at
(read1.address - UPI _base Offset) % 64 + MEB_base offset

address:

a Fairgate

The ICM CPU Mode: LSSW Trace

o readl.address, == imm(rsl)

® write.address, == readl.address,

® readl.value == word stored in UPI at offset imm(rsl)
® uwrite.value == readl.value

When challenging a read/write operation, the 1ssw instruction will be also valid as
if the following write trace had been produced:

® write.address, == (readl.address, - UPI_base Offset) % 64 +
MEB base offset

a Fairgate

Fun Facts

® \Writing a word to two locations related by a known delta is as challengeable as writing it to
a single location.

® Aninstruction BLKSTORE imm (rsl) <- rs2 that fills 1 Megabyte of RAM with a certain
word value can be challenged as easy as a single word write.

® (Can a program be made more efficient using BLKSTORE ?

a Fairgate

The ICM CPU Mode: Program Sections

e Section A:

o Runin ICM mode.
o Program reads the UPI, move the bytes to the MEB, perform hashing

operations using HASH_UPDATE, finalize with HASH_FINAL and leave the

final result in the MIB.
o Uses LSSW to move words from UPI to MEB.

e Section B:
o Normal program operation. Program must parse D’ to extract Ul.

a Fairgate

The ICM CPU Mode: Section A Code

int bmax = maxPI / 64; // Assumes maxPI % 64 == 0, and maxPI is OT-signed by Alice
for (int b=0;i<bmax;b++) {
for(int j = 0;3j<64;j++) {
MEB[i % 64],UPI[i] = UPI[i] // use LSSW
i++;
}
HASH UPDATE < — CHALLENGABLE
}
padding() ;

HASH FINAL < — CHALLENGABLE

a Fairgate

Additional Research Done

e Can we use an interactive version of Schnorr-signed messages where Alice and Bob
exchange signed messages before the BitVMX protocol starts?
YES, but there is no evident use case.

e Can we use Schnorr signatures to publish and sign the midstates within BitVMX ?
Yes, but the benefit is not significant

e How does this protocol extend to multiple parties ?
Yes!

a Fairgate

Summary

We have presented a new method to sign BitVMX program inputs with ECDSA or
Schnorr signatures, instead of using an OTS scheme.

We achieved a 1:1 data expansion factor (vs 1:200 for Winternitz)

Now we can verify uncompressed SPV proofs, STARKs, NOVA, bulletproofs.

To protect from malformed or fraudulent data publications we use a secondary BitVMX.
We use the Winternitz signature of the sequential hash inside the BitVMX CPU.

We add a SHA-256 hasher to the BitVMX CPU to hash the program input

Our most advanced scheme based on enveloping uses standard Bitcoin transactions
and has minimal overhead

a Fairgate

BitVMX summary

The execution trace is defined as:
trace, = write.addressi | | write.valuei || writePC.pci
The ftull trace is defined as:

full tracei = readl.addressi | | readl.value.l | |
readl.lastStep, [|...|| writePC.pc,

The step hash is defined is:

stepHash, = h(stepHash, , |[trace,)

1

a Fairgate

The ICM CPU Mode: New Trace

tracei = write.addressi
|| MIB, || opcode.
1 1

e Trace size: 49 bytes

| | write.valuei

|| writePC.pci

a Fairgate

The ICM CPU Mode: New Search Process

step hash chain

AB
N J
Y

n-ary search here

a Fairgate

The ICM CPU Mode: New Search Process

faulty instruction

LSSW <a> r
| |
| |

\y

read UPI[q]

a Fairgate

Search

Process
(MEB,, MIB,)
HASH UPDATE
faulty ins.
r |
| | |
| | | | |
LSSW <a> X AB
MIB =V (Correct)
MIB

r-1

a Fairgate

Search (1) If OWCF(MIB_, MEBMIB)is | MEB, SllE GrElange..
incorrect challenge! :
Process (2) Use the table on the right: Comect | Correct LSSR write
Correct Incorrect not possible
Incorrect | Correct not possible
(|\/|EB MIB) Incorrect | Incorrect (no Binary search
X’ X past or future (r-1)<q<AB
HASH UPDATE MIB) OWCF:g-1->¢
faulty ins.
r -1 q
| | | |
| | | | |
X
LSSW <a> AB
MIB =V (Correct)
HASH UPDATESs
MIBr-1 N J

~

binary search here

a Fairgate

The ICM CPU Mode:
New Search Process

r

set x

Partition search to find bad step r

l

Request trace at
step rand (r-1)

no

Is opcode
HASH_UPDATE?

no

Is opcode at step
ranlssw?

yes

Continue with the normal
instruction challenge of
step r (including invalid

MIB change)

Alice signs the next hash

update step x, trace_and MEB,.

l

L

Script verifies correct OWCF

operation for MEB, . or Alice is

allowed to challenge it.

yes
Is MEB, correct ?

no

Challenge value written to
MEB, by opcode Issw

steps (z,z+1) between x and

Partition search to find

AB such that MIB, is
incorrect but MIB,, , is
correct.

Challenge Alice to provide
a MEB value that can be
applied to state MIB, to

produce state MIB

z+1’

a Fairgate

Using Enveloping for the Timelock-based DA Scheme

a Fairgate

Using Enveloping for the Timelock-based DA Scheme

Transaction KA

General Kick-off

Inputs

Outputs

Transaction CA

Data Commitment

Transaction RA

Data Revelation

P2TR
(handle)

Inputs Outputs
ST P2TR X
Vv, OA ¢

A

Commitment)

Inputs

Outputs

Taproot
path.
Script U,
Sig. Y,
(Ul Data)

a Fairgate

Program Input in Enveloping: TaplLeaf

Tagged Hashes in Taproot (No Tapbranch/Tapleaf Ambiguity)

t
Taproot PubKey TaggedHash (' TapTweak ', P| ABC)
Q=P+ t6
Lexicographic Ordering

ABC of Children in Hash.
TaggedHash('TapBranch’,AB & C)

AB Cc
TaggedHash('TapBranch’ |A & B) TaggedHash('TapLeaf’, ver|size|script_C)

1

A B
TaggedHash('TapLeaf’, ver|size|script_A) TaggedHash('TapLeaf',ver|size|script_B)

a Fairgate

Program Input in Enveloping

Memory Map |
‘ Unsigned Program Input |
0 2%2-1

Tagged Hash
tag_hash | tag_hash | LV | Compact_size(U) Script U
- - 0 - Signature | PO | IF | P | UIL User Input END
OP_FALSE —|
leaf_version OP_IF OP_ENDIF

OP_PUSHDATAZ2

User Input Len

a Fairgate

The DA-DAG

H A
ransaction Transaction R
Data Commitment :
Transaction KA Data Revelation
Inputs Outputs - —
General Kick-off HPAS utputs
Sig. S, :
Inputs Outputs Sig. S, aproot
i E 2 P2TR X R
P2TR ._’_.‘ VIO, —@— ScriptU,
(handle) - (L,Jt' 5 Sig. Y,
ommitmen
P2TR W, OAW, (Ul Data)
(timeout) j no timeout

Transaction K&,

BitVMX User Instance

Inputs Outputs

V,
o, , 0%

TL

Transaction P®_

Punishment

Inputs

Outputs

Cov,

timelock

Cov

(timeout)

TL

Transaction P%_

Punishment

Inputs Outputs

Taproot
path
Sig. Q,
(Timelock)

Sig. Q,
Sig. W

(timeout)

Transaction K&,

BitVMX Schnorr sig
validation instance kick-off

Inputs Outputs

F, 0% and

a subset of
other variables
(depending on

F) with their
OT signatures

protocol
continues

protocol
continues

rad Fairgate

Transactions without covenants

Transaction K&,

BitVMX User Instance

Inputs Outputs

V,
o, , 0%

H A
ransaction Transaction R
Data Commitment :
Transaction KA Data Revelation
Inputs Outputs - —
General Kick-off HPAS utputs
Sig. S, :
Inputs Outputs Sig. S, aproot
i E 2 P2TR X R
P2TR ._’_.— VIO, ~@— ScriptU,
(handle) - (L,Jt' 5 Sig. Y,
ommitmen
P2TR W, OAW, (Ul Data)
(timeout) j no timeout
Transaction P%_
Transaction P®_
iy Punishment
= Punishment —
= Inputs | Outputs
Inputs Outputs
Taproot
Cov, path
timelock Sig. Q,
Cov (Timelock)
(timeout) Sig. Q,
Sig. W
(timeout)

Transaction K&,

BitVMX Schnorr sig
validation instance kick-off

Inputs Outputs

F, 0% and

a subset of
other variables
(depending on

F) with their
OT signatures

protocol
continues

protocol
continues

rad Fairgate

Transactions without covenants

Transaction K®,

BitVMX User Instance

Inputs Outputs

V,
o, , 0%

protocol
continues

Transaction KA
General Kick-off
Inputs Outputs
P2TR
(handle)
P2TR
(timeout) j
Challenges \

Invalid Transaction C*
Invalid Program Input
Hash Commitment V
Invalid Signature W
Invalid Transaction RA/

TL

: A
Transaction C Transaction RA
Data Commitment Data Revelation
Inputs Outputs
Inputs Outputs
Sig. S, T
Sig. S.. aproot
2 P2TR X path.
v OA "-@— ScriptU,
» 2y (QI Sig. Y,
w, 04, Commitment) (Ul Data)
no timeout
L
Transaction P8
Transaction P8,
Punishment
Punishment —
= Inputs Outputs
Inputs | Outputs
Taproot
Coy, path
timelock Sig. Q,
Cov (Timelock)
(timeout) Sig. Q,
Sig. W
(timeout)

Transaction K&,

BitVMX Schnorr sig
validation instance kick-off

Inputs

Outputs

F, 0% and

a subset of
other variables
(depending on

F) with their
OT signatures

protocol
continues

rad Fairgate

Signatures of Future Transactions

Transaction CA

Data Commitment

Transaction RA

Data Revelation

Inputs Outputs

Taproot
path.
Script U,
Sig. Y,
(Ul Data)

no timeout

Transaction K®,

BitVMX User Instance

Inputs Outputs

V,
o, , 0%

protocol
continues

Transaction KA
Inputs Outputs
General Kick-off
Sig. S,
Inputs Outputs Sig. S,, P2TR X
P2TR ® Vv, 0 |
(handle) v - (L,Jt' 5
ommitmen
P2TR W, O
timeout
() Py

-

How can we

-

be sure that

Alice’s signature W of
transaction PAC is correct ?

)

~

TL

Transaction P®_

Punishment

Inputs Outputs

Cov,

timelock
Cov

(timeout)

TL

Transaction P%_

Punishment

Inputs Outputs

Taproot
path
Sig. Q,
(Timelock)

Sig. Q,
Sig. W
(timeout)

Transaction K&,

BitVMX Schnorr sig

validation instance kick-off

Inputs

Outputs

F, 0% and

a subset of
other variables
(depending on

F) with their
OT signatures

protocol
continues

rad Fairgate

Challenge 1: Inva

Transaction CA

Data Commitment

id Transaction CA

Transaction RA

Data Revelation

Inputs

Outputs

Taproot
path.
Script U,
Sig. Y,
(Ul Data)

no timeout

Transaction K®,

BitVMX User Instance

Inputs Outputs | protocol
continues
Vv, IR
A B
O O

ﬁ:hallenges 1: Invalid
Transaction CA

Qutputs).

Bob wants to prove that transaction
A .

C" is correctly signed by S, or S,,

but it is malformed (invalid address

X, additional unexpected inputs or

~

/

Transaction KA
Inputs Outputs
General Kick-off
Sig. S,
Inputs Outputs Sig. S,, P2TR X
P2TR ® Vv, 0 |
(handle) v - (L,Jt' 5
ommitmen
P2TR W, O,
(timeout) j °

Transaction P®_

Punishment

Inputs Outputs

Cov,

timelock
Cov

(timeout)

TL

Transaction P%_

Punishment

Inputs

Outputs

Taproot
path
Sig. Q,
(Timelock)

Sig. Q,
Sig. W
(timeout)

Transaction K&,

BitVMX Schnorr sig
validation instance kick-off

Inputs Outputs

F, 0% and

a subset of
other variables
(depending on

F) with their
OT signatures

protocol
continues

rad Fairgate

Field Size Description Field Size Description
hash_type 1 [A byte indicating the which inputs/outputs are being signed Sha_annex 32 | The SHA-256 of the optional annex included at the
end of the witness field.
nVersion 4 | The transaction version field.
Sha_single_output 32 | The SHA-256 of the output opposite the input
nLockTime 4 | The transaction locktime field. currently being signed for.
SIGHASH_ SINGLE
sha_prevouts 32 | The SHA-256 hash of the txid+vout outpoints for all the inputs included in
the transaction. ~SIGHASH ANYONECANPAY tapleaf_hash 32 | The leaf hash for the chosen script you’re using
_ from the script tree.
sha_amounts 32 | The SHA-256 hash of all the output amount fields for all the inputs Script path spend extension (tapscript)
included in the transaction. ~SIGHASH ANYONECANPAY
key_version 1 | The type of public key used in the leaf script.
sha_scriptpubkeys 32 | The SHA-256 hash all the output scriptpubkeys for all the inputs included Script path spend extension (tapscript)
in the transaction. ~SIGHASH ANYONECANPAY
codesep_pos 4 | The opcode position of the last
sha_sequences 32 | The SHA-256 hash of all the sequence fields for all the inputs included in OP_CODESEPARATOR in the leaf script.
the transaction. Script path spend extension (tapscript)
sha_outputs 32 | The SHA-256 hash of all the outputs in the transaction.
~(SIGHASH NONE or SIGHASH SINGLE)
]
spend_type 1 [A single byte that encodes the extension flag and annex present values. W h at I a p ro Ot S I g n S
outpoint (input) 36 | The txid+vout outpoint of the input being signed for.
SIGHASH ANYONECANPAY
amount (input) 8 | The amount field of the input being signed for. SIGHASH ANYONECANPAY
scriptPubKey (input) | vari | The scriptpubkey of the input being signed for. SIGHASH ANYONECANPAY
able
nSequence (input) 4| The sequence field of the input being signed for.
SIGHASH ANYONECANPAY
input_index 4 | The vin of the input being signed for. ~SIGHASH ANYONECANPAY a FG l rgOte

Field Size Description Field Size Description
hash_type 1 [A byte indicating the which inputs/outputs are being signed Sha_annex 32 | The SHA-256 of the optional annex included at the
end of the witness field.
nVersion 4 | The transaction version field.
Sha_single_output 32 | The SHA-256 of the output opposite the input
nLockTime 4 | The transaction locktime field. currently being signed for.
SIGHASH_ SINGLE
sha_prevouts 32 | The SHA-256 hash of the txid+vout outpoints for all the inputs included in
the transaction. ~SIGHASH ANYONECANPAY tapleaf_hash 32 | The leaf hash for the chosen script you’re using
_ from the script tree.
sha_amounts 32 | The SHA-256 hash of all the output amount fields for all the inputs Script path spend extension (tapscript)
included in the transaction. ~SIGHASH ANYONECANPAY
key_version 1 | The type of public key used in the leaf script.
sha_scriptpubkeys 32 | The SHA-256 hash all the output scriptpubkeys for all the inputs included Script path spend extension (tapscript)
in the transaction. ~SIGHASH ANYONECANPAY
codesep_pos 4 | The opcode position of the last
sha_sequences 32 | The SHA-256 hash of all the sequence fields for all the inputs included in OP_CODESEPARATOR in the leaf script.
the transaction. Script path spend extension (tapscript)
sha_outputs 32 | The SHA-256 hash of all the outputs in the transaction.
~(SIGHASH NONE or SIGHASH SINGLE)
L] [] []
spend_type 1 [A single byte that encodes the extension flag and annex present values. D ete Ctl n g Ad d Itl O n a |
outpoint (input) 36 | The txid+vout outpoint of the input being signed for.
STGHASH. ANYONECANERY Inputs (method 3
amount (input) 8 | The amount field of the input being signed for. SIGHASH ANYONECANPAY
scriptPubKey (input) | vari | The scriptpubkey of the input being signed for. SIGHASH ANYONECANPAY
able
nSequence (input) 4| The sequence field of the input being signed for.
SIGHASH ANYONECANPAY
input_index 4 | The vin of the input being signed for. ~SIGHASH ANYONECANPAY a FG l rgOte

Field Size Description Field Size Description
hash_type 1 [A byte indicating the which inputs/outputs are being signed Sha_annex 32 | The SHA-256 of the optional annex included at the
end of the witness field.
nVersion 4 | The transaction version field.
Sha_single_output 32 | The SHA-256 of the output opposite the input
nLockTime 4 | The transaction locktime field. currently being signed for.
SIGHASH SINGLE
sha_prevouts 32 | The SHA-256 hash of the txid+vout outpoints for all the inputs included in
the transaction. ~SIGHASH ANYONECANPAY tapleaf_hash 32 | The leaf hash for the chosen script you’re using
_ from the script tree.
sha_amounts 32 | The SHA-256 hash of all the output amount fields for all the inputs Script path spend extension (tapscript)
included in the transaction. ~SIGHASH ANYONECANPAY
key_version 1 | The type of public key used in the leaf script.
sha_scriptpubkeys 32 | The SHA-256 hash all the output scriptpubkeys for all the inputs included Script path spend extension (tapscript)
in the transaction. ~SIGHASH_ ANYONECANPAY
codesep_pos 4 | The opcode position of the last
sha_sequences 32 | The SHA-256 hash of all the sequence fields for all the inputs included in OP_CODESEPARATOR in the leaf script.
the transaction. Script path spend extension (tapscript)
sha_outputs 32 | The SHA-256 hash of all the outputs in the transaction.
~ (SIGHASH NONE or SIGHASH SINGLE)
L] [] []
spend_type 1 [A single byte that encodes the extension flag and annex present values. D ete Ctl n g Ad d Itl O n a |
outpoint (input) 36 | The txid+vout outpoint of the input being signed for.
SIGHASH ANYONECANPAY u tp u tS
amount (input) 8 | The amount field of the input being signed for. SIGHASH ANYONECANPAY
scriptPubKey (input) | vari | The scriptpubkey of the input being signed for. SIGHASH ANYONECANPAY
able
nSequence (input) 4| The sequence field of the input being signed for.
SIGHASH ANYONECANPAY
input_index 4 | The vin of the input being signed for. ~SIGHASH ANYONECANPAY a FG l rgOte

Detecting an invalid output X

Unspendable Internal

Key (NUMS)
N 7
X=P+1tG
\

sha_outputs

t
TapTweak
amount (known to Bob)
TapBranch
TapLeaf V
(known to Bob)

|

CLV(t) CHECK_SIG(PKA,)

(Published by
Alice)

a Fairgate

Challenge 2: Inva

Transaction CA

Data Commitment

Transaction RA

Data Revelation

Inputs

Outputs

Taproot
path.
Script U,
Sig. Y,
(Ul Data)

no timeout

iId Program Input Hash V

Transaction K®,

BitVMX User Instance

Inputs Outputs | protocol
continues
Vv, IR
A B
O O

-

W

N

Bob wants
program input hash V signed with
0", does not match the data signed

to prove

Challenge 2: Invalid Program
Input Hash Commitment V

that

ith Schnorr in signature S,.

Transaction KA
Inputs Outputs
General Kick-off
Sig. S,
Inputs Outputs Sig. S,, P2TR X
P2TR ® Vv, 0 |
(handle) v - (L,Jt' 5
ommitmen
P2TR W, O,
(timeout) j °

Transaction P®_

Punishment

Inputs Outputs

Cov,

the

timelock
Cov

/

(timeout)

TL

Transaction P%_

Punishment

Inputs

Outputs

Taproot
path
Sig. Q,
(Timelock)

Sig. Q,
Sig. W
(timeout)

Transaction K&,

BitVMX Schnorr sig
validation instance kick-off

Inputs Outputs

F, 0% and

a subset of
other variables
(depending on

F) with their
OT signatures

protocol
continues

rad Fairgate

Challenge 3: Inva

Transaction CA

Data Commitment

id Signature W

Transaction RA

Data Revelation

Inputs Outputs

Taproot
path.
Script U,
Sig. Y,
(Ul Data)

no timeout

Transaction K®,

BitVMX User Instance

Inputs Outputs

V,
o, , 0%

protocol
continues

[N

Challenge 3: Invalid
Signature W

Transaction KA
Inputs Outputs
General Kick-off
Sig. S,
Inputs Outputs Sig. S,, P2TR X
P2TR ’ Vv, 0 |
(handle) v - (L,Jt' 5
ommitmen
P2TR W O,
(timeout) j °

Transaction P®_

Punishment

Inputs Outputs

Bob wants to prove that the value
W given in C* does not correspond
to a valid signature for transaction

NG J

Cov,
timelock

Cov
(timeout)

TL

Transaction P%_

Punishment

Inputs Outputs

Taproot
path
Sig. Q,
(Timelock)

Sig. Q,
Sig. W
(timeout)

Transaction K&,

BitVMX Schnorr sig

validation instance kick-off

Inputs

Outputs

F, 0% and

a subset of
other variables
(depending on

F) with their
OT signatures

protocol
continues

rad Fairgate

Challenge 4: Inva

Transaction CA

Data Commitment

Transaction KA
Inputs Outputs
General Kick-off
Sig. S,
Inputs Outputs Sig. S,, P2TR X
P2TR ® Vv, 0 |
(handle) v - (L,Jt' 5
ommitmen
P2TR W O,
(timeout) j °

id Transaction RA

Transaction RA

Data Revelation

Transaction K®,

BitVMX User Instance

Inputs

Outputs

Taproot
path.
Script U,
Sig. Y,
(Ul Data)

no timeout

Inputs

Outputs

protocol

V,

continues

A B
O O

/Challenge 4: Invalid
Transaction RA

Bob wants
transaction R* has no

to prove

may want to prove

Qerformed a I/0 grinding attack. /

~

that the
additional

inputs or outputs. Otherwise, Bob

that Alice

Transaction P®_

Punishment

Inputs Outputs

Cov,

timelock
Cov

(timeout)

TL

Transaction P%_

Punishment

Inputs Outputs

Taproot
path
Sig. Q,
(Timelock)

Sig. Q,
Sig. W
(timeout)

Transaction K&,

BitVMX Schnorr sig

validation instance kick-off

Inputs

Outputs

F, 0% and

a subset of
other variables
(depending on

F) with their
OT signatures

protocol
continues

rad Fairgate

Future Research

e Can we use an interactive version of Schnorr-signed messages where Alice and Bob
exchange signed messages before the BitVMX protocol starts?

e (Can we use Schnorr signatures to publish and sign the midstates within BitVMX ?
How does this protocol extend to multiple parties ?

a Fairgate

Summary

We have presented a new method to sign BitVMX program inputs with ECDSA or
Schnorr signatures, instead of using an OTS scheme.

We achieved a 1:1 data expansion factor (vs 1:200 for Winternitz)

Now we can verify uncompressed SPV proofs, STARKs, NOVA, bulletprofs.

To protect from malformed or fraudulent data publications we use a secondary BitVMX.
We use the Winternitz signature of the sequential hash inside the BitVMX CPU.

We add a SHA-256 hasher to the BitVMX CPU to hash the program input

Our most advanced scheme based on enveloping uses standard Bitcoin transactions
and has minimal overhead

a Fairgate

ESSPI: ECDSA/Schnorr
Signed Program Input for
BitVMX

Sergio Demian Lerner, Martin Jonas, and Ariel Futoransky

“To deeply understand most things, it takes more than one hour of a remote meeting” - Old proverb

a Fairgate

