
A community-supported initiative
to drive the establishment of
BitVMX as the solution of choice in
Disputable Computing on Bitcoin

September 2025

Building Advanced Bitcoin
Protocols with BitVMX
Dive into the BitVMX Platform Architecture

Martin Jonas | BitVMX Principal Engineer
Ariel Futoransky | CSO

What is BitVMX ?

● Disputable Computation on Bitcoin

● Allows to define UTXO spend condition based on the result of program

● Any program compiled into RISC-V

● In particular ZKP Groth16 verifier, but could be other

● If all agree (off-chain) → Happy path

● If not → Dispute (on-chain)

Applications Using BitVMX

● Union Bridge

○ Decentralized bridge

○ 1/n honest assumption

○ Bridge BTC → RBTC (on rootstock L2 blockchain)

● Cardinal

○ Bitcoin NFT/Ordinal Defi mode

○ 1/n honest assumption

○ Allows to lock an ordinal and trade it on Cardano Blockchain

○ Uses T.O.O.P to reduce the need for operator collaterals

Design Decisions

● Pragmatic

● Protocol Agnostic

● Modular

● Fault Tolerant

● Adversarial Robust

● Scalable

● Standard TXs

Building Blocks

● Verifier execution off-chain / Validation on-chain

● Proof generation

● Graph of transactions agreed on setup

● Persistent Storage

● Tx Signing + WOTS

● Bitcoin monitoring and dispatching

● Connection between subsystems

● Connection between operators

● Orchestration

Architecture
Overview

BitVMX-CPU

● Maps every RISC-V instructions into Bitcoin Script

● Off-chain evaluation of the program

● Dispute logic, to find the fault instruction in case of challenge

Protocol Builder

● Design complex protocols expressed in Bitcoin Transactions

● Creates different types of TXs (Segwit, Taproot)

● Stores metadata to know how to sign every input

● CPFP TXs

● Dust and TxFee calculation

● Graph visualization

Storage

● Use RocksDB as Backend (key-value database)

○ Performance

○ Transactions operations

○ Simplicity

● Encryption layer

Key Manager

● Key generation and handling

● Supports signing

○ ECDSA

○ Schnorr

○ Musig2 Protocol for Aggregated Signatures

○ Winternitz OTS

○ RSA

Bitcoin Components

● Indexer

○ Keep track of current blockchain state

● Monitor

○ Track specific TXs (from protocol graphs)

○ Track external TXs (some conditions)

○ Confirm state of dispatched TXs

● Coordinator

○ Dispatch TXs requested by BitVMX

○ Ensures CPFP and RBF are funded and dispatched (increasing fees)

● Message Broker (using Tarpc)

○ Sends messages between components

○ TLS Encrypted

○ Pinned Certificates for Client and Server

○ Allow list

○ Routing

● Used to connect subsystems

● Communication between BitVMX Operators (setup/accept phases)

Communication

RiscZero Proof Generation Helper

● Helps running the RiscZero proof generator, passing inputs and getting the proof

● Can run locally

● Start AWS instances with specialized hardware

BitVMX Client

● Handles requests made by the Protocol specific Clients (Union, Cardinal)

● Connect with other Operators to setup the protocols

● Tracks and dispatch TXs from the protocols

● Automatically reacts to specific TXs

○ Collaborate with valid flux

○ Challenging malicious activity

BitVMX Support for Garbled Circuit

● Garbled Circuits will be integrated in future

versions

● BitVMX modular solution support switching

BitVMX-CPU and Dispute Channel with

Garbled Circuit Dispute

● Compatible with the rest of the components

Open Source and BitVMX SDK

● Completing the Open Sourcing of all the repos

● Simplifies connection with BitVMX

● Simple backend layer with API

● Frontend as example

Some Innovations

Claim Gates

● Problems

○ Exponential nature of protocol txs subgraphs

○ Need to use maximum time lock (worst case)

● Allow to connect multiple conditions to a single tx with a single TxId

● Can be executed when any of the conditions is met

Bitcoin Script Stack Tracker

● Helps creating complex bitcoin scripts

○ Used to implement the optimized versions of Blake3 and SHA256

○ All RISC-V IM32 Opcodes

○ Dispute channel Challenges

● Key features

○ Variable/Struct Tracking and manipulation

○ Debugging (inspired by Johan Halseth presentation on btc++ austin 2024)

○ Optimization

Bitcoin Script Stack Tracker

https://github.com/FairgateLabs/rust-bitcoin-script-stack

https://bitvmx.org/knowledge/optimizing-algorithms-for-bitcoin-script-part-2

https://github.com/FairgateLabs/rust-bitcoin-script-stack
https://bitvmx.org/knowledge/optimizing-algorithms-for-bitcoin-script-part-2

Minimum Relay Fee Problem

● Witness counts on the minimum relay fee

● Cost of verification scripts and the data encoded using WOTS are really high

● We had to lock on top of the DUST for the whole protocol 1 sat/vb for all the potential

witnesses of TXs

Solution: Move Inputs to CPFP

● We were using CPFP on all TXs (impossible to forecast tx fee)

● Keep the graph connections for the flow (no inputs)

● Move the input and execution of big scripts into Speedup output

● Make the CPFP Tx to pay for the fee from the wallet for speedups

● Add some extra time lock TXs for penalising for not dispatching the CPFP

● Protocols more capital efficient

Hackathon

Berlin | October 2-4, 2025

Thank you!

https://github.com/FairgateLabshttps://www.fairgate.io/ https://bitvmx.org/

