
A community-supported initiative
to drive the establishment of
BitVMX as the solution of choice in
Disputable Computing on Bitcoin

October 2025

Getting Started with BitVMX
A Practical Approach

| Pedro Prete | Blockchain Developer Berlin, OCT 2025

What is BitVMX?

● Disputable Computation on Bitcoin

● Allows defining UTXO spend conditions based on program results

● Any program compiled into a RISC-V binary

● For example, a ZKP Groth16 verifier (but could be others)

● If all agree off-chain → Happy path (99% of the time)

● If not → On-chain dispute

Applications using BitVMX

Union Bridge

○ Decentralized bridge

○ 1/n honest assumption

○ Bridge BTC → RBTC (on the Rootstock

L2 blockchain)

Cardinal

○ Bitcoin NFT/Ordinal DeFi mode

○ 1/n honest assumption

○ Allows to lock an ordinal and trade it on

Cardano Blockchain

○ Uses T.O.O.P to reduce the need for

operator collateral

Hackathon

Berlin | October 2-4, 2025

BitVMX track

The Lightning++ hackathon includes an optional BitVMX challenge with a 2,000,000 sats

prize!

Judges will primarily use the presentations to select winners with the following criteria:

● Routine Difficulty: Project idea, potential impact, ambition.

● Routine Execution: Achievement, what you actually built, does it work?.

● General Effect: Wow Factor, presentation, applicability to theme.

What can I do?

BitVMX lets you design optimistic protocols on Bitcoin. Perform computation off-chain

and use Bitcoin L1 only for fraud proofs & settlement. For example:

● Trust-minimized cross-chain bridges, BitVMX verifies bridging logic between Bitcoin

and another chain (e.g. RSK, ETH rollup).

● Bitcoin-native stablecoins or decentralized derivatives , BitVMX manages collateral,

liquidation logic, and enforces mint/redeem rules.

● Verifiable games where moves occur off-chain but disputes are resolved on-chain.

● Tournaments and betting systems settling in BTC without trusted intermediaries.

Example app

Check out our example repo https://github.com/FairgateLabs/bitvmx-hackathon-games

It includes:

● Visual frontend to help understand the concept

● BitVMX-powered backend

● Documentation

You can learn more at our Knowledge Hub

Or talk to us directly at BitVMX Devs Telegram

https://github.com/FairgateLabs/bitvmx-hackathon-games
https://bitvmx.org/knowledge
https://t.me/+HnlusWvtyyY4YjEx

Using BitVMX

Communication

Message Broker (using Tarpc)

● Sends messages between internal and external BitVMX components

● TLS Encrypted

● Pinned Certificates for Client and Server

● Allow list

● Routing

https://github.com/FairgateLabs/rust-bitvmx-broker

Communication - Code example

pub fn init_broker(role: &str) -> Result<DualChannel> {
 let config = Config::new(Some(format!("config/{}.yaml", role)))?;
 let broker_config = BrokerConfig::new(config.broker_port, None);
 let bitvmx_client = DualChannel::new(&broker_config, L2_ID);
 Ok(bitvmx_client)
}

let msg = IncomingBitVMXApiMessages::GetPubKey(funding_public_id, true)?;
bitvmx_client.send(BITVMX_ID, msg.to_string())?;

BitVMX Client

● It’s where the Protocols live, and where you need to add new ones.

● Uses BitVMX CPU to verify Program’s execution through the BitVMX Job Dispatcher

● Connect with other Operators BitVMX Clients to setup the protocols

● Tracks and dispatch TXs from the protocols

● Automatically reacts to specific TXs

○ Collaborate with valid flux

○ Challenge malicious activity

Setting up program and protocol - Code example

let program_id = Uuid::new_v4();

let program_path = "../BitVMX-CPU/docker-riscv32/riscv32/build/hello-world.yaml";

let msg = IncomingBitVMXApiMessages::SetVar(program_id, "program_definition",

VariableTypes::String(program_path.to_string()))?;

bitvmx_client.send(BITVMX_ID, msg.to_string())?;

let msg = IncomingBitVMXApiMessages::Setup(program_id,

PROGRAM_TYPE_DRP.to_string(), vec![p2p_address_1, p2p_address_2], 1)?;

bitvmx_client.send(BITVMX_ID, msg.to_string())?;

BitVMX CPU

● Maps every RISC-V instruction into Bitcoin Script

● Off-chain evaluation of the Program

● Dispute logic to identify the faulty instruction in case of a challenge

● The CPU runs as a separate process inside BitVMX Job Dispatcher

 to allow potential multiple parallel executions.

https://github.com/FairgateLabs/rust-bitvmx-job-dispatcher

Program - Code example

#include <stdint.h>
#include "emulator.h"

int main(int x)
{
 unsigned int *a = (unsigned *)INPUT_ADDRESS;
 unsigned *b = a + 1;
 unsigned *c = a + 2;
 if (*a + *b == *c) { return 0;}
 else {return 1;}
}

Program - Build

● We need to build our program into RISCV32 compatible .elf files

● Repo with helpers to build the program

https://github.com/FairgateLabs/bitvmx-docker-riscv32

● build the images run the corresponding script for Win,Linux,Mac (docker-build.bat,

docker-build.sh or docker-build-mac.sh)

● Compile a program example docker-run.bat riscv32 riscv32/build.sh

src/hello-world.c --with-mul

● Compile a ZKP groth16 verifier docker-run.bat verifier verifier/build.sh

--with-mul

https://github.com/FairgateLabs/bitvmx-docker-riscv32

Program - Yaml

elf: add-test.elf
nary_search: 8
max_steps: 50
input_section_name: .input
inputs:
 - size: 8
 owner: const
 - size: 4
 owner: prove

BitVMX Client - Protocols

Protocols are like plugins for BitVMX, adding extra functionality. They can:

● Set flows using Directed Acyclic Graphs (DAGs) of pre-signed Bitcoin transactions

● Store and read information

● Send transactions and receive updates about them

● Sign with aggregate keys (MuSig2 multisig)

● Sign using Winternitz keys

● Hold the program definition

Protocols

Creating a Protocol - Protocol Handler

To add a protocol in BitVMX we need to create it at src/program/protocols and implement

ProtocolHandler, where you can add functionality like:

● Generate keys

● Define Protocol Setup

● Receive transactions news

● Trigger transactions on finish

https://github.com/FairgateLabs/rust-bitvmx-client/tree/main/src/program/protocols
https://github.com/FairgateLabs/rust-bitvmx-client/blob/main/src/program/protocols/protocol_handler.rs

BitVMX Protocol Builder

Creates complex protocols DAGs using Bitcoin transactions

● Creates and stores different types of transactions (Segwit, Taproot)

● Stores metadata to know the inputs, outputs, spending paths, and signatures

● Speed-ups using Child-Pays-for-Parent (CPFP) transactions

● Dust and TxFee calculation

● Graph visualization

https://bitvmx.org/knowledge/new-bitvmx-open-source-components-delivery-introducing-the-bitvmx-protocol-builder-graph-based-transaction-design-for-bitcoin?version=X

BitVMX Protocol Builder - Code example

// Add the output to the claim transaction that contains two leaves:
// 1. The aggregated signature for the stoppers
// 2. The timelock script that will be used by the claimer if he succeeds the claim
let verify_aggregated = scripts::check_aggregated_signature(&aggregated,
SignMode::Aggregate);
let timeout = scripts::timelock(timelock_blocks, &aggregated, SignMode::Aggregate);

let start_tx_output = OutputType::taproot(
 amount_fee + ((1 + actions.len() as u64) * amount_dust),
 aggregated,
 &vec![verify_aggregated.clone(), timeout],
)?;
protocol.add_transaction_output(&stx, &start_tx_output)?;

Summary

October 2025

Thank you!

https://github.com/FairgateLabshttps://www.fairgate.io/https://bitvmx.org/

